criteol. research

Large Scale Recommendation in a RTB Platform

Suju Rajan

VP, Head of Research
Criteo

Wait, what is RTB?

Why do we need online advertising?
Maintains the free use of internet

Who are the main players?

criteol

Wait, what is RTB?

Imagine, managing the business of showing an ad every time someone uses an online "site".

Many different options of which participating in Ad Exchanges is one.
RTB = Real Time Bidding

Simply stated:

- Publisher has a display opportunity (user, page, slot, timestamp)
- Display opportunity auctioned into an ad exchange
- Ideally, $2^{\text {nd }}$ price auction winner gets to display an ad to the user

As an example, at Criteo:

DISPLAY LUMAscape

120 ms to respond with an ad

RTB at Scale:

Main questions to answer:

1. How much should we bid for a given ad space?

2. What products should we recommend/show?

COMMON OBJECTIVE:
Maximize client (advertisers)'s value
3. What is the best look and feel of the banner?
 research

Recommendation at Criteo

Recommendation Challenge

We have successfully bid and won an ad impression on behalf of an advertiser. Now we need to decide the right product to put in front of the user.

We have less than 100ms to respond.

Recommendation Challenge : Data Sources

Advertiser Catalogs ~3B+ products

THe new stanarb por what ashat sho can be

Advertiser Site Events ~2B+ events/day
p admitted about his job to
1e job? In fact, yes. He has
gup the Iran nuclear deal and
sncy. He replaced his first
sh Michael Flynn, who turned
1 payroll but also the Turkish
. McMaster.
an carnage" in the streets
p has continually fomented fear
rly unauthorized immigrants.
titicians seeking to capititize on the

his same troubling logic that a
$\frac{\text { e-American interment asi }}{\text { rely ypon the presupposition of }}$
Tely upon the presupposition of
on. Most chilling of all, both arise

s , atonement may \square

Ad Display Events $\sim 20 B+$ events/day

Recommendation Stage 1: Candidate Selection

Candidate Selection
\square

Recommendation Stage 1: Candidate Selection

Recommendation Stage 2:Ranking

We select a thresholded number of products from each source
De-dupe the sources
The reduced set of products are then ranked by a LR model that tries to maximize the probability of sale of a product

Product-specific

User-specific

User-product interactions

Display-specific

Feature Space

Recommendation Stage 2:Ranking

criteol.

Recommendation Stage 2: Ranking

criteol.

Enabling counterfactual analysis

We don't want to only display top-k products selected by LR

No exploration limits the performance of models learned from the biased data

Instead we sample the products to be shown from a multinomial distribution defined by the LR scores (f_{p})

$$
P(\text { slot } 1=p)=\frac{f_{p}}{\sum_{\left\{p^{\prime} \in P_{c}\right\}} f_{p^{\prime}}} \quad P\left(\text { slot } 2=p^{\prime} \mid \text { slot } 1=p\right)=\frac{f_{p^{\prime}}}{\sum_{\left\{p^{\dagger} \in P_{c} \wedge p^{\dagger} \neq p\right\}} f_{p^{\dagger}}}, \quad \text { etc. }
$$

Dataset released for evaluation of Policy Learning Algorithms

Has $\sim 100 \mathrm{M}$ ad impressions
$8500+$ banner types (Top $10=30 \%$ of impressions)

Upto 6 displayed products with a candidate pool that is 10 times the number of displayed products

21M impressions for 1 -slot and over 14M for 6-slot banners

Has a subset of product features

Dataset pointer at research.criteo.com research

Hey, where's the Deep Learning?!!

How about a little Prod2Vec first? [Grbovic et al., WWW 2015]

Word2Vec: Words that appear in similar context get embedded into a space where they are closer

Apply the same idea to user \& product interaction sequences: Prod2Vec

MetaProd2Vec [Vasile et al., RecSys 16]

Prod2Vec + Product Meta Data (Example: Categories, Brands, etc.)

Place additional constraints on product co-occurrence based on meta data

Helps create noise-robust embeddings specifically in cold-start cases

MetaProd2Vec [Vasile et al., RecSys 16]

M metadata space
$\lambda \quad$ hyperparameter that expresses importance of extra constraints
$L_{M \mid I} \quad$ constraint \#1
$L_{J \mid M}$ constraint \#2
$L_{I \mid M}$ constraint \#3
$L_{M \mid M}$ constraint \#4

Constraint 4: Next brand plausible given the current one

MetaProd2Vec [Vasile et al., RecSys 16]

Dataset: 30Music Dataset

- Playlists data from Last.fm API

- Sample of	Method: Cold Start	HR @20 (Pair freq=0)	HR@20 (Pair freq<3)
- Resulting	Rank by Popularity	0.0002	0.0002
	Prod2Vec	0.0003	0.0078
Task: Next ev	MetaProd2Vec	0.0013	0.0198

- Hit Ratio @ K
- NDCG

WIP: Content2Vec [Nedelec et.al, Under Review]

Take into account all product signal (image, text, co-occurrences etc).

Assume final task is one of predicting "co-event", such as, co-view

1. Find the representation that optimizes P (co-event)
2. Merge the representations from different signals

Showing promising results on cold-start case improving over individual models

WIP

Causal embeddings

Modeling attribution to recommendations

Deeper user profiles

Prospecting or user cold start

Thanks!

