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Wait, what is RTB?

Why do we need online advertising?

Maintains the free use of internet

Who are the main players?
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Wait, what is RTB?

Imagine, managing the business of showing an ad every time someone uses an online “site”.

Many different options of which participating in Ad Exchanges is one.

RTB = Real Time Bidding

Simply stated:
« Publisher has a display opportunity (user, page, slot, timestamp)
« Display opportunity auctioned into an ad exchange

« |deally, 2" price auction winner gets to display an ad to the user
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As an example, at Criteo:
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RTB at Scale:

1: REVENUE IN 2016
2: ANNUAL RATE 2016

3:$ OF TURNOVER GENERATED TO OUR CLIENTS
- TURNOVER POST-CLICK WW FROM JANUARY TO

DECEMBER 2016
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Main questions to answer:

1. How much should we bid for a given ad space?
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2. What products should we recommend/show? COMMON OBJECTIVE:

2 o =B & mmmmm)  Maximize client

(advertisers)’s value

3. What is the best look and feel of the banner?

ompan > My company >
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Recommendation Challenge

We have successfully bid and won an ad impression on behalf of an advertiser. Now we need to
decide the right product to put in front of the user.

We have less than 100ms to respond.
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Recommendation Challenge : Data Sources
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Advertiser Catalogs
~3B+ products

Advertiser Site Events
~2B+ events/day
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Recommendation Stage 1: Candidate Selection

Advertiser Site Events Candidate Selection
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Recommendation Stage 1: Candidate Selection

Multiple times
a day
—
Source
3
~500M
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Recommendation Stage 2:Ranking

We select a thresholded number of products from each source

De-dupe the sources

The reduced set of products are then ranked by a LR model that tries to maximize the
probability of sale of a product

X =

Product-specific User-specific User-product interactions Display-specific

Feature Space
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Recommendation Stage 2:Ranking
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Recommendation Stage 2: Ranking

LR Scoring

Model

Y

Deduped Recommendation
—
Multiple times
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~500M criteol..
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Enabling counterfactual analysis

We don’t want to only display top-k products selected by LR

No exploration limits the performance of models learned from the biased data

Instead we sample the products to be shown from a multinomial distribution defined by the LR
scores (f,)

P(slotl = p) = Jo P(slot2 =p' | slotl = p) = Jo , etc.
E{plepc} fp, Z{pT EPC/\pT;/;p} pr
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Dataset released for evaluation of Policy Learning Algorithms

Has ~100M ad impressions

8500+ banner types (Top 10 = 30% of impressions)

Upto 6 displayed products with a candidate pool that is 10 times the number of displayed products

21M impressions for 1-slot and over 14M for 6-slot banners

Has a subset of product features

Dataset pointer at research.criteo.com
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How about a little Prod2Vec first? [Grbovic et al., WWW 2015]

Word2Vec: Words that appear in similar context get embedded into a space where they are closer

Apply the same idea to user & product interaction sequences: Prod2Vec

purchases of user Un

pi-1 pi+1

Projection
A

View(P1) View(P2) Sale(P3)

pi
i-th product
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MetaProd2Vec [Vasile et al., RecSys 16]

Prod2Vec + Product Meta Data (Example: Categories, Brands, etc.)

Place additional constraints on product co-occurrence based on meta data

Helps create noise-robust embeddings specifically in cold-start cases
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MetaProd2Vec [Vasile et al., RecSys 16]

I I
LMPZV — L]|I + A X (LMll + L]lM + LM|M + LIlM)

M metadata space
A hyperparameter that expresses importance of extra constraints

Ly constraint #1
Ly constraint #2
Lyy  constraint #3
Lym  constraint #4

ULl dlilliu v. 1 1vuuuliL rJICAUOIUIIILy 3IVUII Ml I

Constraint 4. Next brand plausible given the current one .
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MetaProd2Vec [Vasile et al., RecSys 16]

Dataset: 30Music Dataset

* Playlists data from Last.fm API

lldl-4gd  Method: Cold Start HR @20 (Pair freq=0) HR@20 (Pair freq<3)

« Resulting 1 Rank by Popularity 0.0002 0.0002
Prod2Vec 0.0003 0.0078
Task: Nextev MetaProd2Vec 0.0013 0.0198

* Hit Ratio @ K

* NDCG
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WIP: Content2Vec [Nedelec et.al, Under Review]

Take into account all product signal (image, text, co-occurrences etc).
Assume final task is one of predicting “co-event”, such as, co-view

1. Find the representation that optimizes P(co-event)

2. Merge the representations from different signals

Showing promising results on cold-start case improving over individual models
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WIP

Causal embeddings

Modeling attribution to recommendations

Deeper user profiles

Prospecting or user cold start
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Thanks!
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