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Summary of results

Recommender systems introduce 
feedback into the ratings matrix.
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Summary of results

Recommender systems introduce 
feedback into the ratings matrix.

We propose an SVD-based method that 
deconvolves that effect* with one matrix.

Skew in deconvolved vs. given ratings 
scatter-plot scores rec. effects. 

ALG

* Will be explained soon! 3
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Summary of results

Recommender systems introduce 
feedback into the ratings matrix.

We propose an SVD-based method that 
deconvolves that effect* with one matrix.

Skew in deconvolved vs. given ratings 
scatter-plot scores rec. effects. 
It also scores system rec. effects

ALG
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MovieLens-10M 0.3821

BeerAdvocate 0.2223
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There’s just one problem.

Doing this is impossible. 

MLRec 2017David Gleich · Purdue 5



A new rating can come from more than just a 
user or via the recommender system. 
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TV Advertisement

Recommendation 

We predict
Thumbs Up

Friend

Really hard! 
• Even if we see the system, 

we still can’t know if the 
recommender system 
caused the rating.

• Even if we interview, a 
user may not remember 
subliminal ad exposure. 
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That’s okay! 
We do impossible stuff all the time. 
(e.g. models of the universe)
But we need strong models.
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“All models are wrong 
but some are useful.”
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Our goal is a model of recommender systems 
that we can invert to understand the effects.
Assumption 0. The observed ratings are a mixture of

true ratings and recommended items

Assumption 1. The recommender system uses an item-item 
similarity matrix S and feedback occurs through this.

H gives the actual selections
via an element-wise prod.
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Our goal is a model of recommender systems 
that we can invert to understand the effects.
Assumption 0. The observed ratings are a mixture of

true ratings and recommended items

Assumption 1. The recommender system uses an item-item 
similarity matrix S and feedback occurs through this.

This process fills in the matrix, but we have no control over H. 

H gives the actual selections
via an element-wise prod.

Exogenous effects are either 
true or recommended J
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Our goal is a model of recommender systems 
that we can invert to understand the effects.
Assumption 2. We model the effect of H in expectation with 
independent coin-tosses on accepting recommendation.

This means we are modeling expected behavior vs. actual behavior.
This gives us a nice expression, but what is S ?
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E [H � R
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] = ↵R
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Each recommendation is
accepted with prob. 𝛼

For simplicity, we use 
const. S, see paper 
to avoid. 
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Our goal is a model of recommender systems 
that we can invert to understand the effects.
Assumption 3. The user means and item norms of Rtrue and Robs are 
close enough that we consider them the same. 
Assumption 4. The item-item similarity matrix S is induced by Rtrue. 
This can be avoided (see the paper) but the presentation is more obscure. 

Together, these assumptions can be interpreted as
• the recommender system is a second-order effect
• it isn’t powerful enough to “change the world” 
• it’s being used in a time-span where big changes don’t occur
• we care about relative rankings
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Our goal is a model of recommender systems 
that we can invert to understand the effects.
Assumption 3. The user means and item norms of Rtrue and Robs are 
close enough that we consider them the same. 
Assumption 4. The item-item similarity matrix S is induced by Rtrue. 
This can be avoided (see the paper) but the presentation is more obscure. 
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Our goal is a model of recommender systems 
that we can invert to understand the effects.
Assumption 5. The spectral radius of
This is a technical scaling assumption. We don’t need it as we could 
pick a different scaling for 
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These assumptions are strong, but (we argue) 
not entirely unreasonable
Assumption 1. The recommender 
system uses an item-item similarity 
matrix S and feedback occurs 
through this.
• Reasonable for “early” recommenders.

Assumption 2. We model the effect 
of H in expectation with independent 
coin-tosses on accepting 
recommendation.
• Reasonable for a model.

Assumption 3, 4. The user means 
and item means of Rtrue and Robs are 
close enough that we consider them 
the same. The item-item similarity 
matrix S is induced by Rtrue. 
• Strong, and they can be replaced with some 

equally strong but less wrong variants. 

Assumption 5. The spectral radius of

• Relatively incidental. Just governs the scaling 
constant of the final numbers. 
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Our recommender inversion theorem gives an 
algorithm to deconvolve a ratings matrix. 

RecSys'17David Gleich · Purdue 17

Assuming the RS follows the driving equation,
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rating matrix is,
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Proof. Write out the SVD of Rtrue and then we just get a polynomial 
expression in the SVD of Rtrue that we can solve. 



Our recommender inversion theorem gives an 
algorithm to deconvolve a ratings matrix. 

Input. R
obs

, ↵, k , where R
obs

is observed ratings matrix, ↵ is parameter gov-

erning feedback loops and k is number of singular values

Output. ˆR
true

, True rating matrix
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We approximate 
by truncating the 
SVD. 



Summary of results

Recommender systems introduce 
feedback into the ratings matrix.

We propose an SVD-based method that 
deconvolves that effect* with one matrix. ALG
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20Image from rockysprings, deviantart, CC share-alike

You believe that this model of a 
recommender is reasonable 

enough to study and we see how 
far the rabbit hole goes!

The talk ends, you 
believe -- whatever 

you want to. 



Real data shows two very different things for 
systems with recommenders and without. 
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Netflix Jester

k = 1500



We create a synthetic recommender system 
to understand the impact of the feedback. 
This is a synthetic model in the spirt of an item-response theory model
• A chosen set of true ratings are sampled initially. 
• We randomly select from these for the initial observed matrix.
• We do 10 rounds of an item-similarity feedback recommender 

based on cosine similarity. At each step, users rate top-10 
recommendations based on true values or recommended ratings.

• This allows us to track which entries were caused by the 
recommender vs. were true ratings. 

• This was a few hundred users and a few hundred items. 
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We create a synthetic recommender system 
to understand the impact of the feedback. 
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When we plot the 
deconvolved ratings matrix 
for the synthetic case, we 
see clear dispersion 
around the ratings that 
arose via the recommender 
system compared with 
those that were true. 

Full SVD.



Using a large value of alpha highlights the 
recommender effects more clearly. 
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We are modeling the 
strength of the 
recommender system in 𝛼, 
so when we invert, we see 
the effect most strongly 
illustrated when 𝛼 is large. 

We always use 𝛼 = 1



By cooking up a heuristic scoring scheme, we 
can identify these “skewed” items! 
We transform the data to emphasize the skew. 
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For each item, we 
estimate a best fit line in 
the presence of outliers 
using the RANSAC 
method. 

We translate the ratings 
so the line is the “y” axis. 

Deviations now show as 
projects on the “x” axis 



By cooking up a heuristic scoring scheme, we 
can identify these “skewed” items! 
We transform the data to emphasize the skew. 
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For each item, we 
estimate a best fit line in 
the presence of outliers 
using the RANSAC 
method. 

We translate the ratings 
so the line is the “y” axis. 

Deviations now show as 
projects on the “x” axis 

Finally, we take absolute values 
and scale to the same range



By cooking up a heuristic scoring scheme, we 
can identify these “skewed” items! 
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We look at fitting a hyperbola through the each 
rating with a unit slope at the fitting point. 
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The resulting score does pretty well at finding 
the influenced ratings.  
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If the point in inside the 
hyperbola with intercept 0, 
then we give it score 0. 
Hence, the kink. 

We again see better 
results with larger 𝛼



There results are largely the same if we vary 
parameters of the synthetic recommender. 
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𝛾 is the fraction of initial ratings e is the propensity to accept a recommendation



We can get an overall estimate of the effect of 
the recommender by summing these scores. 

Our system score is the 
fraction of ratings where we 
see recommender effects to 
any degree. 
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For the synthetic case, as we vary the 
recommender strength e, we can look 
at the scores. 



Summary of results

Recommender systems introduce 
feedback into the ratings matrix.

We propose an SVD-based method that 
deconvolves that effect* with one matrix.

Skew in deconvolved vs. given ratings 
scatter-plot scores rec. effects. 
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Case studies 
with our 
method on real 
data! 
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Dataset Users Items Rating

Jester-1 24.9K 100 615K

Jester-2 50.6K 140 1.72M

MusicLab-Weak 7149 48 25064

MusicLab-Strong 7192 48 23386

MovieLens-100K 943 603 83.2K

MovieLens-1M 6.04K 2514 975K

MovieLens-10M 69.8K 7259 9.90M

Netflix 480K 16795 100M

BeerAdvocate 31.8K 9146 1.35M

RateBeer 28.0K 20129 2.40M

Fine Foods 130K 5015 329K

Wine Ratings 21.0K 8772 320K
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RateBeer 28.0K 20129 2.40M

Fine Foods 130K 5015 329K
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Joke ratings collected with 
an experimental design

Music ratings collected 
with varying system 
feedback effets (but no 
recommender system) 

Music ratings collected 
with varying system 
feedback effets (but no 
recommender system) 

The 100M netflix data

Another large set of 
recommender system 
data from SNAP and 
various website with no 
explicit recommenders

* We do remove users with few ratings.



Real data shows two very different things for 
systems with recommenders and without. 
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Netflix Jester

k = 1500

Score = 0.26Score = 0.05



In the MusicLab experiment, we see more 
dispersion with the feedback scenario. 
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Score = 0.11 Score = 0.15



We see increasing effects for MovieLens over 
time as the number of ratings grows. 
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Score = 0.30 Score = 0.38Score = 0.28
Score = 0.37



We see varying recommender effects even in 
systems that do not have explicit systems. 
Recall that our model is 
recommended + true. 
So any feedback 
effects will be called 
recommender effects. 
These systems may 
have other forms of 
feedback that we are 
sensitive too. 
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Score = 0.15 Score = 0.22

Score = 0.16Score = 0.12



Looking at the individual scores shows that 
obscure movies are subject to feedback. 
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Oscar 
nominee!

Well known 
Indian films

In the Netflix data, TV 
shows show low 
recommender effects.
Within TV, Season 1 is 
more recommended. 

Obscure Indian 
movies show high 
recommender system 
effects. 



There is a ton of future work if people want to 
follow up on this! 
Questions for real data 
• Are the deconvolved ratings were more useful in 

producing recommendations.
• How accurate are we at detecting these feedback 

loops based on logs of which items are 
recommended? 

Tractable theory & practice relaxations
• What if we are given a similarity matrix S? 
• Can we quantify how similar the norms need to be? 
• Can this same thing be done for a low-rank model 

of a recommender? 
• What about for general active learning scenarios? 
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