
Collaborative filtering for household load prediction given contextual
information

Taha Hasan∗, Naveed Arshad†, Erik Dahlquist‡, Scott McCrickard∗

Abstract

Matrix factorization models express the relationships be-

tween energy demand profiles of a collection of households

as inner products in a joint latent factor space inferred from

known consumption data. Neighborhood models explicitly

characterize the said relationships by determining how simi-

lar the consumption patterns are among these various house-

holds. This study leverages the two strategies to describe a

collaborative filtering framework for the individual house-

hold load prediction problem. It provides the potential to

incorporate weather, structural and sociological data and

improve on the explainability and accuracy of constituent

models.

1 Introduction

Household short-term load forecasting is a key enabling
technology for several envisioned functionalities of the
comprehensive residential energy management system
(EMS). A forecast of state variables (weather, tem-
perature, local demand/generation) is central to au-
tomated scheduling and control of household appli-
ances in systems like Energy Box [11]. Device-level
and aggregate load ‘profiles’ for households help iden-
tify and visualize patterns of energy use for consumers
and researchers [12]. PHEV integration in household
microgrids, vehicle-to-grid technology and demand re-
sponse (DR) services require careful modeling of ex-
pected household demand [7]. However, there is a
marked increase in time-series volatility for household
load data (up to several orders of magnitude) relative
to aggregate load for a colony, microgrid or a power-
system at large [6], [5]. This suggests the need for fore-
casting solutions that are robust to electrical noise, load
and seasonal dynamics. It also emphasizes the need to
leverage structural and contextual information to cap-
ture usage patterns local to a sub-group of households
or to a significant period of usage and the relationships
between the two.

Collaborative filtering models are among the most
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competitive and intuitive models for identifying and
leveraging local relationships in sparse matrices and
generating concise representations thereof [9]. This
study describes a collaborative filtering approach to pre-
dict energy demand profiles for a collection of house-
holds given contextual information.

2 Problem statement

Let Xh be the data matrix corresponding to energy
usage of a single household worth Nw weeks sampled
at Rs hr

−1. X ∈ RNw×Ns , Ns = 168 × Rs. Weather
and humidity data matrices W and H are of same
dimensionality. Matrix entries for test weeks need to
be estimated for all Nh households.

2.1 Global effects and biases Global effects and
biases model the enduring effects of each household and
each specific time interval in Ph,t independent of their
interaction. Baseline consumption for each household in
the SVD model (Ph,t = µ+bh+bt)[9] identifies the global
bias µ, the variance contributed by each household h,
bh and by each timestamp t, bt. A couple of aspects
are important to discuss here. One, high volatility/low
SNR renders the global bias ineffective and leads to
poorer precision of prediction on the household scale
relative to that on the colony/neighborhood scale. Two,
accounting for the variance in Ph,t from each timestamp
leads to a substantially large number of features and
models the noise and transient effects in addition to
the signal of interest. Instead, a fixed number of
features - corresponding to hour, day and month indices
and average outdoor temperature etc. - are used as
discriminants.

(2.1) Ph,t = bh +
∑
k

bd,k

A least squares problem can be devised to learn the
parameters bh and bd1..k as follows.

min
b

∑
h

∑
t

(yh,t − bh − bd1..k)2 +λ1 ∗ (
∑
h

b2h +
∑
k

b2d,k)

The first term minimizes the squared error between



measured power usage at a given time instant for each
household and the baseline model. The second term
penalizes the magnitude of the various terms in the
baseline model to prevent overfitting and keep the
predictions generalizable.

2.2 Matrix factorization models Matrix factor-
ization models infer a latent-factor space which ex-
presses a co-clustering interpretation [8] for electricity
consumption data using inner products in the factor
space [9]. The factors qt and ph are d-dimensional tu-
ples and represent the timestamp t and household h
in the d-dimensional factor space, respectively. Each
household-timestamp pair is, in turn, represented as the
inner product qTt ph.

(2.2) Ph,t = qTt ph, q, p ∈ Rd

The model parameters are learnt by solving the
following optimization problem.

min
p,q

∑
h

∑
t

(yh,t − qTt ph)2 +λ2 ∗ (
∑
h

||ph||2 +
∑
t

||qt||2)

An alternating least squares (ALS) approach [2], [3]
or stochastic gradient descent [9] can be used to learn
these parameters.

2.3 Neighborhood models Surveyed literature for
this study brings the regression performance of neigh-
borhood modeling into question. In [5], proximity in
time-series cross-correlation identifies k households that
‘lead’ the energy consumption of a given household.
Prior consumption data (previous hour/day) from these
households is incorporated in the data matrix for each
household, albeit with no significant gains in prediction
accuracy for regression or kernel-based models. Such
a model marginally compensates accuracy for the case
where previous hour data fails to capture sharp spikes
and swells in residential demand. On the other hand,
predictive power is also favored by including consump-
tion data - for all households - and contextual data - for
each individual household - directly in the data matrix,
as demonstrated in [6]. Avoiding the segmentation of
customer data in this fashion, however, arguably loses
the explainability of resulting models. Experiments in
section 4 suggest that an improved accuracy of predic-
tion using recent historical data of k nearest neighbors
requires careful feature selection and regularization.

The neighborhood model in eq. 2.3 samples the pre-
vious day’s consumption data of k-th neighbor weighted
by a similarity index shk. A regularization constant
α ensures that neighborhood information for distant
households is not captured by the model.

Eqs. 2.2 and 2.3 are combined to deliver the final
prediction rule in eq. 2.4.

(2.3) Ph,t = γ3

∑
k shkPk,prevday

α+
∑

k shk

(2.4) Ph,t = bh + bd1..k + qTt ph + γ4

∑
k shkPk,prevday

α+
∑

k shk

All parameters for eq. 2.4 are simultaneously learnt
in the pattern of eqs. 2.1 and 2.2 by minimizing the
following objective function.

min
b,p,q

∑
h

∑
t

(yh,t − bh − bd1..k − qTt ph − γ4
∑

k shkPk,prevday

α+
∑

k shk
)2

+λ4 ∗ (
∑
h

(b2h + ||ph||2) +
∑
k

b2dk +
∑
t

||qt||2 + γ24)

2.4 Prediction strategies For day-ahead load pre-
diction, unknown rows of the data matrix are estimated
using day selection heuristics described in PJM’s anal-
ysis of DR baselines[10]. In general, long-term predic-
tion can be carried out by asserting a ‘context’ for each
test day [4] using criteria such as same hour/month/day
indices, proximity in weather conditions or k-previous
days. The factor products for same-context training
days are averaged for each test day. Section 4 evaluates
these criteria for day-ahead prediction.

As an alternative to the use of empirical day se-
lection heuristics, a kernelized extension of the sparse
factor model can be pursued. Authors in [8] cast the
load data matrix X as sum of a low-rank component
L and a sparse factor model QTP . Elements of L and
QTP are parametrized in terms of kernel matrices Kl1,
Kl2, Kq and Kp which encode information about time-
series correlation with prior weeks. Block coordinate
descent (BCD) is employed to iteratively compute the
constituent blocks of L and QTP . For future work, we
intend to incorporate weather and contextual data di-
rectly in the product kernel.

3 Evaluation

3.1 Dataset and Initial Conditions Dataset for
this study is contributed by a 2007 project initiated by
Ireland’s Commission for Energy Regulation (CER) to
assess the behavioral impact of energy usage feedback on
household electricity consumers. The project conducted
in-depth customer behaviour trials (CBTs) during 2009
and 2010 with over 5,000 Irish homes and businesses
across a variety of demographics and home sizes [1]
contributing consumption, structural and contextual
data.



Table 1: ISSDA pre-trial survey: sample questions

ID Sociological ID Structural
200/300 Respondent’s age/sex 450 Apt./detached/semi-detached

310 Employment status of chief income earner 453/460/6103 House build year/# bedrooms/floor area
420/431 Residents above/below 15 years of age 470 Heating: central/plug-in/gas/oil/renewable

4021 Yearly household income before tax 4704 Cooking: electric/gas/oil/solid fuel
4331X Motivation: reducing carbon footprint 4900X # appliances: washer, dryer, dishwasher
4331X Motivation: saving money on utilities 4900X # appliances: electric heater, cooker, PC
4352 Prior knowledge of power usage of appliances 4900X # hours daily usage for each appliance

Table 2: Effect of neighbors’ consumption data (k = 32) on regression error

Alg. MLR (Corr) MLR (Eu) LASSO (Eu) LASSO (Cos)
∆MAPE (test, %) +2.9 +2.0 -4.3 -4.1

The dataset includes pre-trial and post-trial ques-
tionnaire data examining the structural aspects of the
household, respondents’ financial background, energy
awareness and initiative for savings. Sample questions
from the pre-trial survey are listed in table 1. The con-
sumption data includes aggregate electricity and natu-
ral gas usage sampled every half-hour for participating
households over a period of 18 months. Only control
group houses (i.e. no identified change in consumption
patterns with feedback) are included in the analysis.
Described models are trained on first twelve months of
the dataset and predictor performance is evaluated on
the final six. A moving average filter (with a six-hour
window) is applied to the dataset to improve the signal-
to-noise ratio and remove null patches.

3.2 Use of household similarity LASSO regres-
sion and a dissimilarity matrix computed using Eu-
clidean or cosine distance goes some way towards reduc-
ing MAPE with an increase in k, the number of neighbor
households.

3.3 Day-selection heuristics PJM’s analysis of
customer baseline protocols [10] provides a variety of
data-selection rules addressing criteria such as prox-
imity to event day in time, power usage and weather
conditions. A subset of these rules (PJM Eco-
nomic/GLD/GLD Weather-sensitive, NYISO, CAISO)
is evaluated for inferring day-ahead electricity demand
in our model. Table 3a specifies the selected days for
each protocol. The first three protocols (PJM Eco-
nomic, CAISO, NYISO) in table 3a are of ‘highest X of
Y ’ type (X highest kWh days out of Y most recent cal-
endar days chosen from Y ′ candidate days). PJM GLD

(weather-sensitive) ranks candidate days by difference
in temperature-humidity index (THI) relative to event
day and chooses the minimum rank day for comparison.
Day-ahead household demand is predicted by averaging
the inner products for days ranked closest to that day
by described rules. Table 3b describes the accuracy of
prediction for these protocols. CAISO offers the mini-
mum RMSE and uses the largest number of days in the
evaluated rules. Prediction accuracy for CAISO declines
as the number of days accounted for in the comparison
exceeds 30.

3.4 Results Table 4 lists the prediction error for day-
ahead forecasts using described baseline models (Prev-
week, All-days and PJM-WS) and collaborative filtering
models in eqs.2.1-2.3 (referred in table 4 as M1-M3).

4 Discussion

It is important to comment on the administrative cost of
baseline estimation methods. An increase in the num-
ber of candidate days factored towards an estimation
method implies a similar increase in cost of data trans-
fer, storage and analysis for market participants [10].
The kernelized extension of M2 might help avoid the use
of empirical day selection strategies,however, the use of
usage data from k-previous weeks for estimation of ker-
nel matrices warrants an operational feasibility analysis.
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