
Understanding Consumer Behavior with Recurrent Neural Networks

Tobias Lang, Matthias Rettenmeier∗

Abstract

Consumer behavior in e-commerce can be described by

sequences of interactions with a webshop. We show that

recurrent neural networks (RNNs) are a natural fit for

modeling and predicting consumer behavior. In multiple

aspects, RNNs offer advantages over existing methods that

are relevant for real-world production systems. Applying

RNNs directly to sequences of consumer actions yields

the same or higher prediction accuracy than vector-based

methods like logistic regression. Unlike the latter, the

application of RNNs comes without the need for extensive

feature engineering. In addition, we show that RNNs help us

link individual actions directly to predictions in an intuitive

way. This allows us to understand the implications consumer

actions have on predicted probabilities over the course of

the consumer’s history. We demonstrate the advantages

of RNNs on the empirical data of a large European online

fashion platform.

1 Introduction

Predicting future consumer behavior is fundamental to
many use-cases in e-commerce. Applications range from
recommender systems over fraud detection to real-time
bidding for online ad-inventory [4, 1, 15, 10, 2, 18]. Such
predictions are based on indicators found in previous
consumer behavior. For example, the time since a
consumer last visited the webshop, the products that
were looked at or the amount of products added to the
cart. Behavior is captured in consumer histories, which
are, in their raw form, sequences of interactions with
the webshop. Interactions are of a particular type, they
have a timestamp and additional information such as
product details. The type is derived from the associated
action, such as a product-view or a cart-addition, the
timestamp is simply the time of the action (Fig.1).

Most of the popular machine learning methods used
in e-commerce, including logistic regression, neural net-
works, and random forests, employ vector-based mod-
els: they operate on feature vectors of fixed length as
input [3]. To apply them to predict consumer behav-
ior, one needs to convert consumer histories into fixed
sets of features. These features are usually hand-crafted

∗Zalando adtech lab GmbH, Hamburg, Germany, {tobias.lang,
matthias.rettenmeier}@zalando.de

Figure 1: Two approaches to model consumer histories:
vector-based methods (Approach 1) use hand-crafted
non-sequential features to encapsulate the signals in
the consumer history; RNNs (Approach 2) model the
sequential consumer history directly.

by domain experts and reflect the indicators mentioned
above. Finding indicators and designing a reliable set
of features is critical for the prediction accuracy. It
requires many iterations of empirical experiments and
involves time-intensive, tedious human work. Further-
more, it is difficult to explain the reasoning for the pre-
diction outcome, in terms of individual consumer ac-
tions, from vector-based models [13]. Predictions that
are hard to explain make it tricky to offer answers
to consumers asking for transparency about how algo-
rithms determine their individual user experience [5].
Furthermore, a better understanding of trained models
helps webshop providers to improve their services [16].

In this paper, we show that recurrent neural net-
works (RNNs) are promising to overcome both short-
comings of vector-based methods, tedious feature en-
gineering and lack of explainability. RNNs operate on
sequences of varying length and therefore provide an ap-
propriate match to consumer histories. We apply RNNs
directly to series of captured consumer actions. RNNs
maintain a latent state that is updated with each action.
RNNs are trained to detect and preserve the predictive
signals in the consumer histories. The latent state cor-

responds to a representation of learned features; no fur-
ther feature engineering is required.

RNNs allow to link individual actions to predictions
in a straightforward manner. To our knowledge, in this
work we provide the first visualizations that exploit
this in the context of e-commerce. This allows to
quantify how predictions are affected by specific actions
or action sequences conducted by the consumer. These
insights are drawn on a quantitative empirical basis—
in contrast to vague intuitions that often drive product
development in e-commerce.

We demonstrate the advantages of RNNs in experi-
ments on large-scale real-world data-sets from Europe’s
leading online fashion platform Zalando1, operating in
multiple countries with millions of customers and a cat-
alog comprising hundreds of thousands of products at
any given moment. We focus on the example of predict-
ing order probabilities, which is fundamental to many
e-commerce and recommender system scenarios.

To summarize, our contributions are the follow-
ing: (i) we show how consumer behavior can be pre-
dicted without sophisticated feature engineering by us-
ing RNNs; (ii) we provide an empirical comparison of
prediction performance on real-world e-commerce data;
and (iii) we demonstrate how RNNs are helpful in ex-
plaining the predictions for individual consumers.

In the next section, we provide background on
common approaches applied in e-commerce today, in
particular the utilization of vector-based methods. In
Sec. 3, we give a short introduction to RNNs and show
how they naturally fit the use-case of predicting future
consumer behavior in e-commerce. In Sec. 4, we provide
empirical results to compare the performance of RNNs
with several baseline methods. In Sec. 5, we show how
the predictions of RNNs can be explained in terms of
individual consumer actions. We discuss related work
in Sec. 6, before we conclude.

2 Background on vector-based methods and
feature engineering

Vector-based machine learning methods like logistic
regression take vectors f = (f1, . . . , fn) of fixed length
n as inputs. Applying these methods on consumer
histories of arbitrary length requires feature engineering:
a fixed set of identifiers fi has to be designed to capture
the essence of an individual consumer history. Only
signals that are encoded in the feature vector can be
picked up by the prediction model.

Defining expressive features often requires both,
domain knowledge as well as data-science intuition. In
our example case of order prediction, one might have

1http://www.zalando.com

a sense of what indicators for an imminent purchase
might be and how they could be conceived into features,
like: Has the consumer added new products to the cart
recently? Collecting these ideas for features in respect
to the given prediction problem is just the first step in
feature engineering.

Additional feature processing steps are often nec-
essary to improve model performance. Preprocessing
may be required if input features consist of numerical,
ordinal, and categorical features at the same time; if
features have different value ranges; or to ensure model
robustness with model regularization. A common pre-
processing approach is to create binary input vectors
from the original input features [3]. For numerical fea-
tures such a transformation is often done by assigning
binary values to value ranges of the numerical feature.
For example, a feature for order counts could be con-
verted into buckets for zero orders, one order, two-five
orders, and six plus orders.

While preprocessing is an important tool to improve
model performance, it artificially increases the dimen-
sionality of the input-vector. Also, the resulting bi-
nary features can be strongly correlated. Both outcomes
make it difficult to tell which action patterns in the un-
derlying consumer histories have a strong impact on the
prediction outcome [13, 6]. We will discuss this in more
detail in Sec. 5.

The specific set of features and their preprocessing
have decisive effects on model performance. These ef-
fects can only be determined in experiments on histori-
cal data and in A/B tests. This makes feature engineer-
ing a critical, but time-consuming and tedious effort.

3 Predicting future consumer behavior with
RNNs

In contrast to vector-based methods, recurrent neural
networks (RNNs) take sequences X = (x1, . . . , xT) of
varying length T directly as inputs. RNNs are built as
connected sequences of computational cells. The cell
at step t takes input xt and maintains a hidden state
ht ∈ Rd. This hidden state is computed from the input
xt and the cell state at the previous time-step ht−1 as

ht = σ(Wxxt +Whht−1 + b)(3.1)

where Wx and Wh are learned weight matrices, b is a
learned bias vector and σ is the sigmoid function. A
hidden state ht captures information from the input
sequence (x1, . . . , xt) up to the current time-step t.
Information from early inputs can thereby be preserved
over time. The dimensionality d of the hidden state
is a hyperparameter that is chosen according to the
complexity of the temporal dynamics of the scenario.

In practice, more sophisticated computational cell

types like long short-term memory cells (LSTMs) [8] are
better in preserving long-term dependencies. LSTMs
maintain an additional cell state C for long-term mem-
ory and calculate hidden and cell states ht and Ct in
the following cascade of gating operations:

ft = σ(Wf [ht−1, xt] + bf)

it = σ(Wi[ht−1, xt] + bi)

Ĉt = tanh(Wc[ht−1, xt] + bC)

Ct = ftCt−1 + itĈt

ot = σ(Wo[ht−1, xt] + bo)

ht = ottanh(Ct)

where W and b are learned weight matrices and bias
vectors. The final hidden state hT of an RNN can be
used to classify a sequence: hT is input into a prediction
network, which can be a simple linear layer or a sequence
of non-linear layers.

During training, the parameters W and b of the
computational cells are adapted to detect signals in the
input sequences that increase prediction accuracy. In-
put sequences X are compressed by this process into
suitable feature vectors hT . Often the compression pro-
cess is viewed as feature learning from raw inputs and is
the reason why work-intensive human feature engineer-
ing is not required before applying RNNs. The complex-
ity of RNN models, however, yields longer processing
time for learning and predicting when compared with
vector-based methods. Model tuning RNNs can also be
more complex for the same reason: there are more ar-
chitectural choices and hyperparameters to tune. Nev-
ertheless, we show here that even simple RNN architec-
tures out-perform vector-based approaches.

3.1 Event-stream RNNs We propose to model the
behavior of consumers with RNNs. Consumer histories
are inherently sequential and of varying lengths T ,
making RNNs a natural model choice. In e-commerce,
available data sources and prediction scenarios often
change, making the generality of RNNs appealing as no
problem-specific feature engineering has to take place.

RNNs can be applied to predict future consumer
behavior in regression and classification settings, for ex-
ample to predict interest in fashion brands or consumer
life-time value. We focus on predicting the probablity
P (ou |xu1 , . . . , xuT) of a consumer u to place an order ou,
which we model as a binary classification problem. For
instance, we could be interested in orders in general or
of specific products. The resulting probability estimates
can be used in a recommender system to deliver appro-
priate product recommendations and webshop contents.

Consumer events x have an action type (product-
views, cart-additions, orders, etc.), a timestamp and

potentially additional information, for example details
about the product that the consumer interacted with.
We input sequences X = (x1, . . . , xT) of consumer
events x directly into RNNs. During training, the RNN
needs to learn to detect relevant action patterns in event
streams. For instance, it may learn that a sequence of
product views in the morning and a subsequent cart-
addition in the evening increases the order probability
more than the reversed sequence, in which a product is
first placed into the cart before the consumer continues
to view other products later.

3.2 Session-stream RNNs Recognizing relevant
patterns in long input streams (> 100 actions) can turn
out to be difficult for the human mind. To achieve bet-
ter explainability, in many e-commerce applications con-
sumer behavior can be viewed on the level of sessions.
A session is a well-defined visit of a consumer to a web-
shop: a subsequence of events within the consumer’s
history that lay no further appart than a predefined
time difference. Here, we split sequences of events into
different sessions if there is a time-gap of more than 30
minutes in-between subsequent events.

We propose session streams S = (s1, . . . , sT) as an
alternative input to RNNs to model consumer behav-
ior and to predict orders as P (ou | su1 , . . . , suT). In this
representation, the input st at time-step t describes a
full session, compressing all its events into a single input
vector by using a mild form of feature engineering on a
session level. We use the following session features: a
binary vector to indicate which action types occurred;
the number of total events and the session length in sec-
onds; and if available, the number of advertisement in-
teractions between the current and the previous session
(which are not part of the webshop session). Apart from
explainability, session streams have a technical advan-
tage over event streams: the required history horizons
are shorter as multiple events are processed at the same
time-step.

4 Experiments

We evaluate RNNs as a model for consumer behavior
on the basis of the model’s ability to estimate order
probabilities. We focus on the probability that a
consumer will order within a short term after she starts
a session at a webshop. The experiments are run on
large-scale data-sets containing millions of consumer
histories at Europe’s leading online fashion platform
Zalando in two countries (exact numbers cannot be
disclosed for business reasons). Consumer histories are
compiled to event sequences from 19 different action
types (product-view, order, cart-addition, etc.). Session
starts of consumers are used as test points. For a

given session start, the task is to predict the probability
that the consumer orders within the current or any
following session within the next seven days. While in
practice we apply our RNN approach mostly to predict
product-specific orders, we focus on general orders here
for simplicity. The consumer’s events prior to the
current session, potentially dating back many weeks,
together with their timestamps constitute the input
data. Apart from the start timestamp, no information
concerning the current session is used as input. Sessions
from six subsequent weeks in spring 2016 are used in
the experiments, involving consumers with at least 15
previous actions (motivated by our practical use case).
Sessions in the first 4 weeks are used for training,
sessions in the last 2 weeks for testing, resulting in
several million training and test sessions. 25% of the
training sessions are used as a validation set. The
two classes are highly unbalanced with more negatives
(sessions without subsequent order) than positives.

4.1 RNN details We use a simple RNN architecture
with a single LSTM layer and ten-dimensional cell
states. The hidden state at the last time-step is
combined with binary non-history features to make the
final prediction in a logistic layer. Thus, the final
prediction of the RNN is linear in the learned and
non-history features. The non-history features describe
time, weekday, and behavioral gender and are also
provided to the baseline methods. Instead of absolute
timestamps, the time differences ∆(xt−1, xt) to the
previous inputs xt−1 are fed to the RNN at each time-
step t. Furthermore, the difference between the last
event xT and the prediction time (the session start) is
provided to the final prediction layer. For event-stream
RNNs, history inputs xt ∈ R20 consist of a one-hot
encoding of the action type and the time difference.
For session-stream RNNs, history inputs st ∈ R23

represent sessions with binary indicators which action
types occurred, the time difference to the previous
session and the characteristics described in Sec. 3.2.
Time differences and, in case of session-stream RNNs,
the total session event counts are logarithmized.

Different RNN models for event-stream and session-
stream inputs (Sec. 3) are trained in each country. For
event-stream RNNs, up to the last 200 consumers events
are used as consumer history; for session-stream RNNs,
up to the last 30 sessions. RNNs were implemented in
Torch 7 using the package rnn [12]. The Adam optimizer
with standard settings was used for training. A learn-
ing rate of 0.001 and Xavier initialization was chosen
according to a small hyperparameter search using the
validation data. Training from scratch took two hours
for session-stream RNNs and about a day for event-
stream RNNs. Since classes are highly unbalanced, we

Country 1 Country 2
NLL AUC NLL AUC

Logistic regression with 0.278 0.545 0.278 0.552
non-history features only

Logistic regression with 0.239 0.774 0.218 0.832
all hand-crafted features

RNN with event stream 0.239 0.778 0.215 0.843
RNN with session stream 0.238 0.778 0.213 0.842

Table 1: Results for logistic regression and RNN models
linear in the hand-engineered / learned features

NLL AUC

NN with hand-crafted features 0.214 0.841
RNN with session stream + non-linear pred. 0.211 0.845

Table 2: Results in Country 2 for a neural net and a
RNN model non-linear in the hand-engineered / learned
features

experimented with pre-training on re-sampled data-sets,
but did not find significant improvements.

The RNNs used in the experiments are comparable
to logistic regression: both models make linear predic-
tions in a single logistic layer using a set of features
which are either learned or hand-crafted. As an exten-
sion, we briefly explore an RNN with non-linear final
prediction including an additional hidden layer of size
100 with ReLU activation function.

4.2 Baselines RNNs are compared to the common
approach of using logistic regression with binary hand-
engineered features [3] (Sec. 2). Logistic regression is
vector-based and cannot model sequential consumer his-
tories directly, but relies on well-chosen features. The
features were determined in intensive feature engineer-
ing efforts over multiple months and have been used in
production systems, resulting in several hundred binary
features. Preprocessing steps for binarization were fine-
tuned empirically. Most features describe the consumer
history (see Table 3 for examples). In addition, the same
non-history features as for the RNN were used. While
logistic regression is linear in the hand-crafted features,
it is non-linear in the consumer histories, due to the
hand-engineered feature definitions. As an extension,
we explore a neural net (NN) as a second vector-based
model; it uses a hidden layer of size 750 and ReLU ac-
tivation function; both parameters were optimized on
the validation set. The Adam optimizer was used for
training. Both baselines were implemented in Torch 7.
Training took about 20 minutes for logistic regression
and a few hours for the neural net.

4.3 Results All models are trained to minimize neg-
ative log-likelihood (NLL). As probability estimates are

required directly in many practical applications, we use
NLL also for evaluation. In some applications, the re-
sulting ranking of consumers is more important than
the probabilities themselves. For this reason, we also
report the area under the ROC curve (AUC).

Table 1 presents the results. The RNN models per-
form about as good as or better than logistic regres-
sion. Session-stream RNNs yield slightly higher accu-
racy than event-stream RNNs. Results for logistic re-
gression employing only the non-history features show
that most of the relevant information for order predic-
tion is contained in the consumer histories.

Both models, logistic regression and the simple
RNN, are linear in the hand-engineered / learned fea-
tures. While more sophisticated non-linear models are
beyond the scope of this paper, we briefly explored the
potential of a non-linear extension to our model. For
the larger Country 2 data-set we tested a neural net
and a session-stream RNN with a two-layer prediction
network. The results are shown in Table 2. Both achieve
better performance than their linear counterparts, with
the extended RNN achieving overall best performance.

4.4 Discussion The results for the baseline models
show that the predictive signal is mostly contained in
the consumer histories. The carefully hand-engineered
features do capture this signal to a great extent. Nev-
ertheless, the RNNs have learned to detect this signal
without advanced feature engineering. RNNs achieve
the same or higher prediction accuracy than both, the
logistic regression and neural nets. In further results not
reported here, we found that using hand-engineered fea-
tures with other vector-based methods, including boost-
ing techniques, did not lead to superior performance,
either, indicating the quality and the limitation of our
feature engineering. While this is a promising result
for RNNs, we suspect further performance gains with
RNNs are possible when employing more sophisticated
RNN architectures. The slightly higher accuracy for
the session-stream RNNs might be due to insufficient
parameter optimization for the event-stream RNNs.

5 Explaining predictions

As machine learning models become ubiquituous in our
everyday lives, demand for explaining their predictions
is growing [5, 16, 14]. In the context of behavior pre-
diction, we want to understand how previous consumer
actions influence model predictions: How does order
probability change when products are put into the cart?
Does it decrease significantly if a consumer does not re-
turn to a webshop for two days? Answers to these ques-
tions are consumer-specific; they depend on the com-
plete consumer history. RNNs provide the explanation

by directly linking consumer actions with the model pre-
dictions. In contrast and contrary to popular beliefs,
it is not straightforward to answer such questions with
vector-based methods like logistic regression [13].

5.1 Vector-based methods Vector-based methods
like logistic regression rely on hand-crafted features.
During feature engineering, ordering and timing of
consumer events are typically lost. This makes it
difficult to relate individual actions in a consumer
history to predictions without additional investigation.

In principle, one could evaluate the logistic regres-
sion model at every single time-step in the consumer
history to determine the influence of individual events.
However, this would involve the inefficient process of re-
calculating features for every time-step. Calculations at
timesteps t and t − 1 would be highly redundant: fea-
tures at t represent the complete history until t and not
only what happened inbetween t − 1 and t.

Generally speaking, explaining the predictions of
vector-based methods is more difficult than often as-
sumed. This holds even for linear models like logistic
regression. Features are often preprocessed, for exam-
ple to binarize counts (Sec. 2). Furthermore, they are
typically strongly correlated, making it troublesome to
interpret individual coefficients [6]. Table 3 shows ex-
emplary features weights in a logistic regression model
used to predict order probabilities. If hundreds of fea-
tures are utilized and are correlated and preprocessed,
explaining the impact of consumer actions becomes a
complex and confusing task [13].

5.2 RNNs RNNs link events over the course of
consumer histories with predicted probabilities in a
straightforward way, due to their natural modeling of
sequences. Hidden states in the RNN are updated af-
ter each event. The hidden state at a specific time-
step in combination with non-history features is all that
is needed to make a prediction based on the consumer
history until this point. Hidden states (and cell states
for LSTM units) are calculated for all time-steps when
making a prediction for a complete consumer history.
In turn, all intermediate predictions come for free and
without redundant calculations. This makes it straight-
forward to visualize the course of predicted probabili-
ties in regard to the consumer events and without the
requirement to interpret the cell states.

Visualizing RNN predictions on a consumer’s event
stream helps to understand which actions have a strong
influence on the overall prediction. Fig. 2 shows the
latent cell states and the corresponding predictions for
the event streams of two consumers used in the exper-
iments. While the cell values cannot be interpreted by
themselves, we can see how they change for the given

]product-views = 0 0.03]sessions = 1 -1.32 Last session < 1 hour ago 1.23
]product-views = 1 0.51]sessions ∈ [2, . . . , 5] 0.02 Last session 1-24 hours ago 0.73
]product-views ∈ [2, . . . , 5] 1.82]sessions ∈ [6, . . . , 10] 1.04 Last session 2-7 days ago -0.02
]product-views ∈ [6, . . . , 10] 0.73]sessions ∈ [11, . . . , 20] 2.38 Last session 8-30 days ago -0.32
]product-views ∈ [11, . . . , 50] 1.51]sessions > 20 0.73 Last session > 30 days ago -0.08
.

Table 3: Exemplary features with potential weights of a logistic regression model for order prediction

inputs over time. The RNN has learned to detect con-
sumer behavior indicative of future orders. The progress
of predicted probabilities shows how individual actions
like cart-additions increase or decrease the order prob-
ability. For example, for the first consumer, the order
towards the beginning as well as the long time difference
of 8279 minutes (>5 days) towards the end both lead to
sudden drops in predicted probability.

It can be difficult for humans to comprehend pat-
terns on the level of individual actions. In e-commerce,
often one wants to understand consumer behavior on
the level of sessions instead. This can be achieved with
the session-stream representation (see Sec.3) that links
sessions to predictions. Fig. 3 shows latent states and
predictions over the session journey of an exemplary
consumer. For example, Session -7 ends with an or-
der, resulting in lower future order probability. The
subsequent sessions are small, but have cart-additions,
leading to slow, but steady increase in order probability.

6 Related work

Traditional approaches in e-commerce are based on
vector-based methods like logistic regression with fea-
ture engineering [3]. Deep learning approaches to pre-
dict consumer behavior have become popular in recent
years, but mostly do not model sequential behavior ex-
plicitly. For example, deep learning has been applied
to predict customer churn in mobile telecommunica-
tions [18, 2] by converting sequential consumer data
like phone calls and expenses into image-like represen-
tations instead of using RNNs. Deep belief networks
and autoencoders have been used as probabilistic gen-
erative processes to predict sessions with orders from en-
gineered features exploiting product interactions of con-
sumers [17]. Non-recurrent deep learning models were
applied to learn abstract representations from product
attributes to predict future sales [1].

RNNs have been investigated in e-commerce and
recommender system scenarios, but not to model con-
sumer behavior in terms of different actions. RNNs have
been applied on the stream of ad-impressions shown to
individual consumers on search result pages to predict
click rates for ads [19]. Other approaches apply RNNs
to item recommendation within a single session based on

the items a consumer interacted with in that session [7].
In contrast to our approach, consumer behavior is not
modeled across sessions and not in the form of different
action types, for instance losing the semantic difference
between cart-additions and product-views. RNNs have
been used for natural language processing to predict
purchases from the contents of twitter messages [10].

The interpretability of RNN models was studied
recently [9, 11]. It was argued that vector-based models
are often not more interpretable than deep learning
models [13]. Explaining the predictions of RNNs has
not received much attention yet [14].

7 Conclusions

We have proposed an approach to apply RNNs to pre-
dict future consumer behavior in e-commerce. Con-
sumer behavior is inherently sequential which makes
RNNs a perfect fit. We are employing RNNs in produc-
tion now which offers lsignificant advantages over ex-
isting methods: reduced feature engineering; improved
empirical performance; and better prediction explana-
tions. In the future, predictions on the level of prod-
ucts and individual tastes will be in our focus, enabling
sophisticated recommendation products. This will re-
quire richer input descriptions at individual time-steps.
Likewise, more sophisticated RNN architectures will be
promising future research.

Acknowledgements We thank Roland Vollgraf and
Nikolay Jetchev at Zalando Research for inspiring dis-
cussions and valuable feedback.

References

[1] C. Bracher, S. Heinz, and R. Vollgraf. Fashion
DNA: Merging content and sales data for recom-
mendation and article mapping. In Workshop Ma-
chine learning meets fashion, KDD, 2016.

[2] F. Castanedo, G. Valverde, J. Zaratiegui,
and A. Vazquez. Using deep learn-
ing to predict customer churn in a mo-
bile telecommunication network. 2016.
http://www.wiseathena.com/pdf/wa dl.pdf.
Accessed on 6 Dec 2016.

Figure 2: Event histories for two consumers are shown. We can explain the predictions of an event-stream RNN
for each by linking their events with LSTM cells and predicted probabilities.

[3] O. Chapelle, E. Manavoglu, and R. Rosales. Sim-
ple and scalable response prediction for display ad-
vertising. Transactions on Intelligent Systems and
Technology, 5, 2014.

[4] Y. Chen, P. Berkhin, B. Anderson, and N. Deva-
nur. Real-time bidding algorithms for performance-
based display ad allocation. In Conf. on Knowledge
Discovery and Data Mining (KDD), 2011.

[5] B. Goodman and S. Flaxman. European Union
regulations on algorithmic decision-making and a
’right to explanation’. In ICML Workshop on
Human Interpretability in Machine Learning, 2016.

[6] S. Haufe, F. Meinecke, K. Goergen, S. Daehne,
J. Haynes, B. Blankertz, and F. Biessmann. On

the interpretation of weight vectors of linear models
in multivariate neuroimaging. NeuroImage, 87:96–
110, 2014.

[7] B. Hidasi, A. Karatzoglou, L. Baltrunas, and
D. Tikk. Session-based recommendations with re-
current neural networks. Intern. Conf. on Learning
Representations (ICLR), 2016.

[8] S. Hochreiter and J. Schmidhuber. Long short-
term memory. Neural Comput., 9(8):1735–1780,
November 1997.

[9] A. Karpathy, J. Johnson, and L. Fei-Fei. Visu-
alizing and understanding recurrent networks. In
Intern. Conf. for Learning Representations Work-
shop Track, 2016.

Figure 3: The session journey of a consumer is shown. We can explain the predictions of a session-stream RNN
for the consumer by linking her sessions with LSTM cell states and predictions. The input to the RNN for
each session consists of the time difference to the previous session; indicators which action types appeared in the
session; the total number of actions; and the session length in seconds (shown in minutes here).

[10] M. Korpusik, S. Sakaki, F. Chen, and Y. Chen.
Recurrent neural networks for customer purchase
prediction on twitter. In Workshop New Trends in
Content-Based Recommender Systems, 2016.

[11] V. Krakovna and F. Doshi-Velez. Increasing the
interpretability of recurrent neural networks us-
ing hidden Markov models. In Workshop on In-
terpretable Machine Learning in Complex Systems,
NIPS, 2016.

[12] Nicholas Leonard, Sagar Waghmare, Yang Wang,
and Jin-Hwa Kim. rnn: Recurrent library for torch.
2015. arXiv preprint arXiv:1511.07889. Accessed
on 6 Dec 2016.

[13] Z. Lipton. The mythos of model interpretability.
In ICML Workshop on Human Interpretability in
Machine Learning, 2016.

[14] M. Ribeiro, S. Singh, and C. Guestrin. ”Why
should I trust you?”: Explaining the predictions
of any classifier. In Conf. on Knowledge Discovery
and Data Mining (KDD), 2016.

[15] Y. Richter, E. Yom-Tov, and N. Slonim. Predicting
customer churn in mobile networks through analy-

sis of social groups. In SIAM Intern. Conf. on Data
Mining, 2010.

[16] A. Vellido, J.D. Martin, F. Rossi, and P.J.G. Lis-
boa. Seeing is believing: The importance of visual-
ization in real-world machine learning applications.
In Verleysen, editor, European Symposium on Ar-
tificial Neural Networks (ESANN), pages 219–226,
2011.

[17] A. Vieira. Predicting online user behaviour
using deep learning algorithms. 2016.
http://arxiv.org/abs/1511.06247. Accessed on
6 Dec 2016.

[18] A. Wangperawong, C. Brun, O. Laudy, and
R. Pavasuthipaisit. Churn analysis using deep con-
volutional neural networks and autoencoders. 2016.
https://arxiv.org/pdf/1604.05377.pdf. Accessed on
6 Dec 2016.

[19] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian,
B. Wang, and T. Liu. Sequential click prediction for
sponsored search with recurrent neural networks.
In AAAI Conf. on Artificial Intelligence, pages
1369–1375, 2014.

