¹Deguang Kong, ²Lei Cen and ¹Hongxia Jin

¹Samsung Research America, ²Purdue University

05/07/2016

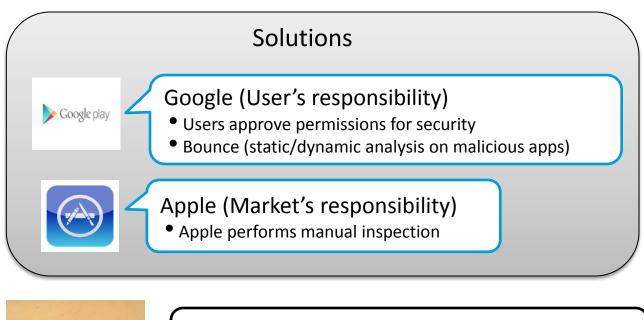
Background

Mobile Applications (Apps)

- The number of mobile apps has increased dramatically
 - Google Play: over 1 million Apps, over 50 billion downloads in July 2013; over 1.2 million Apps in June 2014
- Apps have played an important role with the popularity of smart phones

Background

Severe threats to cyber security


- Macfee: 82% of the apps track user's information; 80% of the apps collect location information
- G DATA: on Android devices, 440,267 new malware samples in the first quarter of 2015

Motivation

DRAWBACK

How to identify the security and privacy risks of mobile apps?

Not user-friendly

Method

5

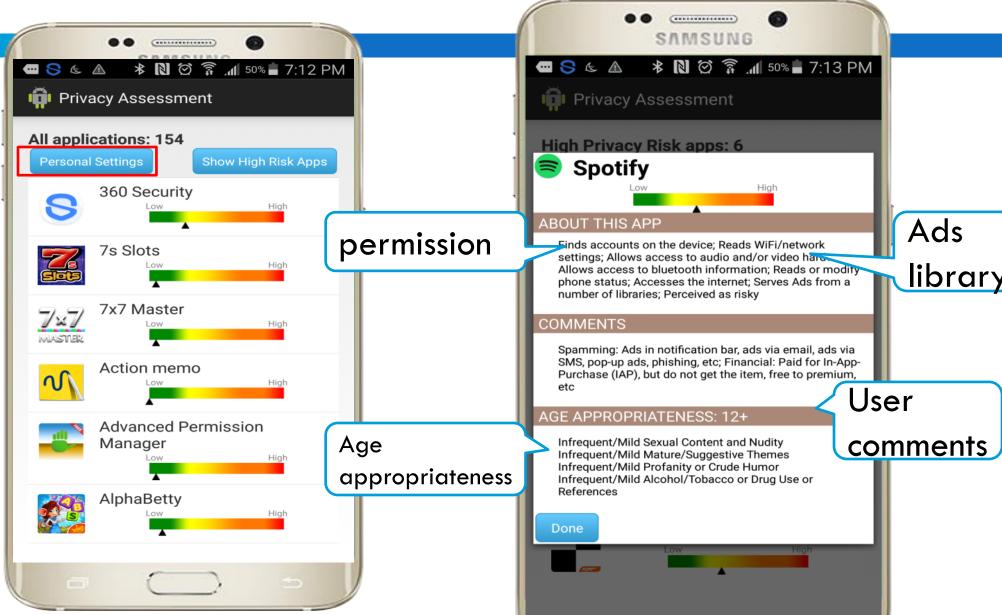
How to identify the security and privacy risks of mobile apps?

- Ranking the risks of mobile apps using app meta data
 - description,
 - user review
 - permission access
 - ads library.
- A ranking model is proposed to capture the relations between the ranking score and privacy indicators.

Approach

Key idea: ranking the apps from labeled apps to unlabeled apps based on label propagation

rable 1. Notations used in the paper				
Notation	Description			
\mathbf{x}_i^v	$\in \Re^{p_v}$, v-th view of feature			
$y = [y_1, y_2, \cdots, y_i]$	$y_i \in \Re^+$, risk score for app <i>i</i>			
$\ell; u$	# of labeled apps, # of unlabeled apps;			
	$n = \ell + u$			
α	$\in \Re^V$, contribution weight for each fea-			
	ture type			
$\mathbf{f} = [f_1, f_2, \cdots, f_n]$	$\in \Re^n$, the desired app risk ranking			
	score			
W_{ij}^v	the similarity of app i, j in terms of v -th			
	view indicator			
\mathbf{f}^T	inverse of the vector f			


Table 1	:	Notations	used	in	the	paper	

$$\min_{\mathbf{f},\alpha} \sum_{v=1}^{V} \alpha_v \mathbf{f}^T \tilde{\mathbf{L}}^v \mathbf{f} + \lambda \|\alpha\|_2^2 + \mathbf{f}^T \tilde{\mathbf{L}}^{\mathcal{W}} \mathbf{f} - \mathbf{f}^T \tilde{\mathbf{L}}^{\mathcal{S}} \mathbf{f}$$

1)s.t. $\alpha^T \mathbf{e} = 1; \ \alpha \ge 0; \ f_i = y_i \ (1 \le i \le \ell);$

where V denotes the number of types of privacy indicators extracted from mobile apps. Eq.(1) consists of three parts: (1) *risk propagation*: term $\sum_{v=1}^{V} \alpha_v \mathbf{f}^T \tilde{\mathbf{L}}^v \mathbf{f}$; (2) multi-view privacy indicator weight α : term $\|\alpha\|_2^2, \alpha^T \mathbf{e} = 1, \alpha \ge 0;$ (3) constraint f by incorporating prior knowledge: term $f_i = y_i$, $\mathbf{f}^T \tilde{\mathbf{L}}^W \mathbf{f} - \mathbf{f}^T \tilde{\mathbf{L}}^S \mathbf{f}$, etc.

Demo

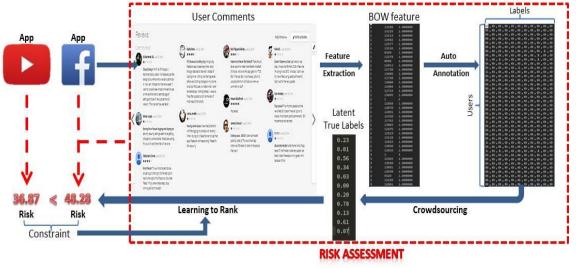
Demo

Other Related Works

8	
Paper title	Venues
Protecting Your Children from Inappropriate Content in Mobile	ACM CIKM'2015
Apps: An Automatic Maturity Rating Framework	
AUTOREB: Automatically Understanding the Review-to-Behavior Fidelity in Android Applications	ACM CCS'2015
Mobile App Security Risk Assessment: A Crowdsourcing Ranking Approach from User Comments	SIAM DM'2015
Towards Permission Request Prediction on Mobile Apps via Structure Feature Learning	SIAM DM'2015
Personalized Mobile App Recommendation: Reconciling App Functionality and User Privacy Preference	ACM WSDM'2015
PinPlace: associate semantic meanings with indoor locations without active fingerprinting	ACM Ubicomp'2015

Mobile App Security Risk Assessment: A Crowdsourcing Ranking Approach from User Comments (SDM'15)

Motivation

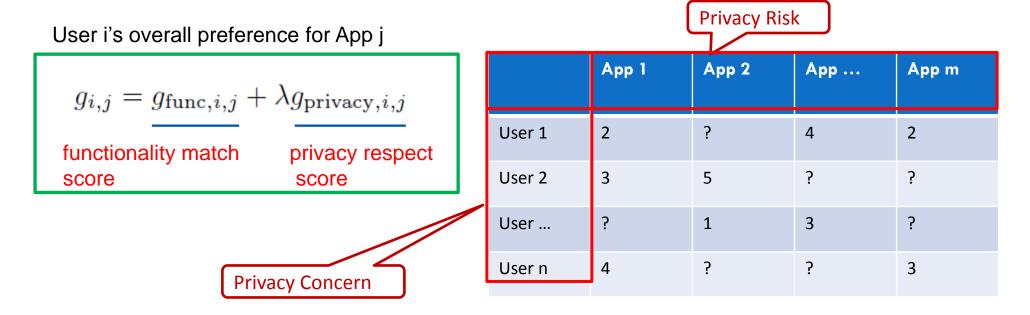

How to rank the privacy risks of mobile apps?

Our approach

Use crowdsourcing to accumulate user comments into app-level features

("feature extraction" \rightarrow "auto annotation" \rightarrow "crowdsourcing")

 Use "learning to rank" model to predict risk scores by utilizing these latent features while enforcing pairwise constraints



Personalized Mobile App Recommendation: reconciling app functionality and user privacy preferences (WSDM'15)

10

Motivation

- Mobile app recommendation for users by considering apps' privacy concerns
- Our method
 - Quantify the tradeoff between App's functionality and user's privacy preference
 - Leveraging Poisson Matrix Factorization for recommendation tasks

Protecting Your Children from Inappropriate Content in Mobile Apps: An Automatic Maturity Rating Framework (CIKM'15)

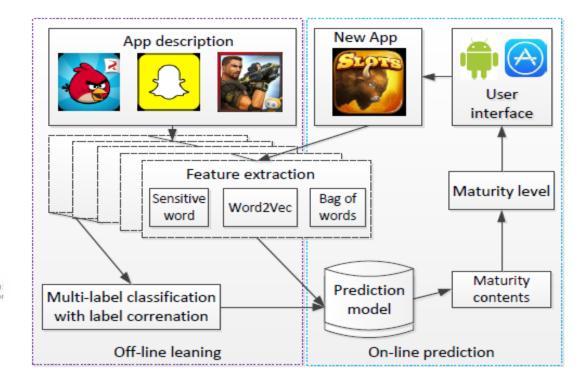
Motivation

11

- Maturity contents such as violence, drug use, etc. may harm children or adolescents
- Predict maturity levels for mobile Apps and the associated reasons with high accuracy and low cost

Our approach

- Feature learning
- Predictive modeling



You must be at least 17 years old to download this app. Frequent/intense Protanity or Crude Humor Frequent/intense Sexual Content or Nudity Frequent/intense Mature/Suggestive Themes
 Rated 12+ for the following: Infrequent/Mild
 Rated 12+ for the following: Frequent/Intense Cartoon or Fantasy Violence

 Mature/Suggestive Themes
 Frequent/Intense Cartoon or Fantasy Violence

 Themes
 Infrequent/Mild Profanity or Crude Humor

 Infrequent/Mild Cartoon or Fantasy Violence
 Frequent/Mild Cartoon or

Thank you

Thanks to all the contributors from SRA.