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Background

2 ]
o Mobile Applications (Apps)

o The number of mobile apps has increased dramatically

m Google Play: over 1 million Apps, over 50 billion downloads in July 2013; over 1.2
million Apps in June 2014

o Apps have played an important role with the popularity of smart phones
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Background

o Severe threats to cyber security

0 Macfee: 82% of the apps track user’s information; 80% of the apps collect
location information

o G DATA: on Android devices, 440,267 new malware samples in the first quarter
of 2015
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Motivation
.

o How to identify the security and privacy risks of mobile apps?

/ Solutions \

Google (User’s responsibility)
® Users approve permissions for security
® Bounce (static/dynamic analysis on malicious apps)

Apple (Market’s responsibility)
\‘ ® Apple performs manual inspection /

‘DRAWQACKJ ® Not enough security/privacy awareness
"L ® Not user-friendly

‘} Google play
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Method
S5

0 How to identify the security and privacy risks of mobile apps?
o Ranking the risks of
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Approach

0 Key idea: ranking the apps from labeled apps to unlabeled apps

based on label propagation

Table 1: Notations used in the paper

Notation Description
X € RPv_ v-th view of feature
Y= [y1,y2, -, i € R, risk score for app i
Cu # of labeled apps, # of unlabeled apps;
n=F~+u
o € R", contribution weight for each fea-
ture type
f=[fi,fa,--,fn] | € R", the desired app risk ranking
score
Wi the similarity of app i, j in terms of v-th
view indicator
£ inverse of the vector f

14
min Y auf L' + Naf3 + £7LVE - £TL5F

(st ale=1 a0 fi=y(1<i<);
where V' denotes the number of types of privacy indicators
extracted from mobile apps. Eq. (] ) consists of three parts:

(1) risk propagation: termz lcrtf Lf:

(2) multi-view privacy indicator weight o: term
laf2,efe=1,a>0;

(3) constraint £ by incorporating prior knowledge:
term f; = y;, fTLVE — fTL, etc.
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Mobile App Security Risk Assessment: A Crowdsourcing Ranking

Aﬁroroach from User Comments ‘SDM’lS‘

o Motivation

m How to rank the privacy risks of mobile apps?

o Our approach
m Use crowdsourcing to accumulate user comments into app-level features
(“feature extraction” = “auto annotation” = “crowdsourcing”)

m Use “learning to rank” model to predict risk scores by utilizing these latent features while
enforcing pairwise constraints
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Personalized Mobile App Recommendation: reconciling app

functionaliti and user Erivaci ﬁreferences ‘WSDM’lS‘

o Motivation

m Mobile app recommendation for users by considering apps’ privacy concerns

o Our method

m Quantify the tradeoff between App’s functionality and user’s privacy preference
m Leveraging Poisson Matrix Factorization for recommendation tasks

Privacy Risk

User i’s overall preference for App |
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Protecting Your Children from Inappropriate Content in Mobile Apps:

An Automatic Maturity Rating Framework (CIKM’15)
11

o Motivation

m Maturity contents such as violence, drug use, etc. may harm children or adolescents

m Predict maturity levels for mobile Apps and the associated reasons with high
accuracy and low cost

o Our approach

m Feature learning

App description
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