
Semi-supervised Collaborative Ranking with
Push at Top

Iman Barjasteh†∗, Rana Forsati‡∗, Abdol-Hossein Esfahanian‡, Hayder Radha†
†Department of Electrical and Computer Engineering, Michigan State University
‡Department of Computer Science and Engineering, Michigan State University

{forsati,esfahanian}@cse.msu.edu, {barjaste,radha}@msu.edu

Abstract

Existing collaborative ranking based recommender
systems tend to perform best when there is enough
observed ratings for each user and the observation
is made completely at random. Under this set-
ting recommender systems can properly suggest a
list of recommendations according to the user inter-
ests. However, when the observed ratings are ex-
tremely sparse (e.g. in the case of cold-start users
where no rating data is available), and are not sam-
pled uniformly at random, existing ranking methods
fail to effectively leverage side information to trans-
duct the knowledge from existing ratings to unob-
served ones. We propose a semi-supervised col-
laborative ranking model, dubbed SCR, to improve
the quality of cold-start recommendation. SCR miti-
gates the sparsity issue by leveraging side information
about both observed and missing ratings by collabora-
tively learning the ranking model. This enables it to
deal with the case of missing data not at random, but
to also effectively incorporate the available side infor-
mation in transduction. We experimentally evaluated
our proposed algorithm on a number of challenging
real-world datasets and compared against state-of-
the-art models for cold-start recommendation. We
report significantly higher quality recommendations
with our algorithm compared to the state-of-the-art.

1 Introduction

Due to the popularity and exponential growth of
e-commerce and online streaming websites, a com-
pelling demand has been created for efficient recom-
mender systems to guide users toward items of their
interests (e.g. products, books, movies) [1]. In col-
laborative filtering (CF) methods such as matrix fac-
torization [13, 5, 18], where the aim is to accurately

∗These authors contributed equally to this work.

predict the ratings, the latent features are extracted
in a way to minimize the prediction error measured in
terms of popular performance measures such as root
mean square error (RMSE). In spark contrast to CF,
in collaborating ranking (CR) models [13, 8, 31, 9],
where the goal is to rank the unrated items in the or-
der of relevance to the user, the popular ranking mea-
sures such as as discounted cumulative gain (DCG),
normalized discounted cumulative gain (NDCG), and
average precision (AP) [12] are often employed to col-
laboratively learn a ranking model for the latent fea-
tures.

Recent studies have demonstrated that CR mod-
els lead to significantly higher ranking accuracy over
their traditional CF counterparts that optimize rat-
ing prediction. This is important considering the fact
that what we really care in recommendation is not
the actual values of ratings, but the order of items
to be recommended to a specific user. Therefore, the
error measures such as RMSE are often hopelessly
insufficient, as they place equal emphasis on all the
ratings. Among ranking models, the methods that
mainly concentrate on the top of the list have received
a considerable amount of attention, due to the higher
probability of examining the top portion of the list of
recommendations by users. Therefore, the introduc-
tion of ranking metrics such as push norm or infinite
norm [21, 3, 8, 14], sparked a widespread interest in
CR models and has been proven to be more effective
in practice [30, 8].

Although CR models for recommender systems has
been studied extensively and some progress has been
made, however, the state of affairs remains unset-
tled: the issue of handling cold-start items in ranking
models and coping with not missing at random as-
sumption of ratings are elusive open issues. First,
in many real world applications, the rating data are
very sparse (e.g., the density of the data is around 1%
for many publicly available datasets) or for a subset
of users or items the rating data is entirely missing

1

(knows as cold-start user and cold-start item prob-
lem, respectively) [23]. Second, collaborative filter-
ing and ranking models rely on the critical assump-
tion that the missing ratings are sampled uniformly
at random. However, in many real applications of rec-
ommender systems, this assumption is not believed to
hold, as invariably some users are more active than
others and some items are rated by many people while
others are rarely rated [29]. These issues have been
investigated in factorization based methods, nonethe-
less, it is not straightforward to adapt them to CR
models and are left open [8].

In this paper, we introduce a semi-supervised col-
laborative ranking model, dubbed SCR , by leveraging
side information about both observed and missing rat-
ings in collaboratively learning the ranking model. In
the learned model, unrated items are conservatively
pushed after the relevant and before the irrelevant
items in the ranked list of items for each individual
user. This crucial difference greatly boosts the per-
formance and limits the bias caused by learning only
from sparse non-random observed ratings.

To build the intuition on how incorporating miss-
ing ratings in SCR is beneficial in handling cold-start
problem and mitigating data sparsity issue, we note
that in many real world applications the available
feedback on items is extremely sparse, and there-
fore the ranking models fail to effectively leverage the
available side information in transducting the knowl-
edge from existing ratings to unobserved ones. This
problem becomes especially eminent in cases where
surrogate ranking models such as pairwise models are
used due to their computational virtues, where the
unobserved ratings do not play any role in learning
the model. As a result, by leveraging rich sources
of information about all items, one can potentially
bridge the gap between existing items and new items
to overcome the cold-start problem.

Turning to the non-random sampling issue of ob-
served ratings, we note that the non-randomness is
observing the ratings creates a bias in learning the
model that negatively impacts the future predictions
and may degrade the resulting recommendation ac-
curacy if ignored. Therefore, the nature of missing
ratings has to be modeled precisely as to obtain cor-
rect results. To reduce the effect of bias, the pro-
posed ranking model takes a conservative approach
and pushes the items with unknown ratings to the
middle of ranked list, i.e., after the relevant and be-
fore the irrelevant items. This is equivalent to as-
suming a prior about the unknown ratings which is
believed to perform well as investigated in [10].

We conduct thorough experiments on real datasets
and compare our results with the state-of-the-art

models for cold-start recommendation to demon-
strate the effectiveness of our proposed algorithm in
recommendation at the top of the list and mitigating
the data sparsity issue.

Organization. This paper is organized as follows.
We briefly review related work in Section 2. We es-
tablish the notation and formally define the prob-
lem in Section 3. In Section 4, we propose the semi-
supervised collaborative ranking model with a push
at the top of the list. We empirically evaluate the
proposed method in Section 5, and conclude in Sec-
tion 6.

2 Related Work

Collaborative ranking for recommendation.
The last few years have seen a resurgence in collab-
orative ranking centered around the technique of ex-
ploiting low-rank structures, an approach we take as
well. Several approaches to CR have recently been
proposed that are mainly inspired by the analogy
between query-document relations in IR and user-
item relations in recommender systems. The PMF-
based approach [4] uses the latent representations
produced by matrix factorization as user-item fea-
tures and learns a ranking model on these features.
CofiRank [32] learns latent representations that min-
imize a ranking-based loss instead of the squared er-
ror. ListRankMF [25] aims at minimizing the cross
entropy between the predict item permutation prob-
ability and true item permutation probability. In [14]
a method for Local Collaborative Ranking (LCR)
where ideas of local low-rank matrix approximation
were applied to the pairwise ranking loss minimiza-
tion framework is introduced.

Cold-start recommendation with side informa-
tion. Due in part to its importance, there has been
an active line of work to address difficulties associ-
ated with cold-start users and items, where a com-
mon theme among them is to exploit auxiliary infor-
mation about users or items besides the rating data
that are usually available [26]. A feature based regres-
sion ranking model for predicting the values (rates)
of user-item matrix in cold-start scenarios by lever-
aging all information available for users and items is
proposed in [19]. The kernelized matrix factoriza-
tion approach studied in [33], which incorporates the
auxiliary information into the MF. In [22] joint fac-
torization of the user-item and item-feature matrices

2

by using the same item latent feature matrix in both
decompositions is utilized.

Recommendation with not missing at random
ratings. Substantial evidence for violations of the
missing at random condition in recommender systems
is reported in [17] and it has been showed that incor-
porating an explicit model of the missing data mech-
anism can lead to significant improvements in pre-
diction performance.The first study of the effect of
non-random missing data on collaborative ranking is
presented in [16]. In [27] an EM algorithm to opti-
mize in turn the factorization and the estimation of
missing values.

3 Preliminaries

In this section we establish the notation used
throughout the paper and formally describe our prob-
lem setting.

Scalars are denoted by lower case letters and vec-
tors by bold face lower case letters such as u. We use
bold face upper case letters such as M to denote ma-
trices. The Frobenius norm of a matrix M ∈ Rn×m is

denoted by ‖M‖F, i.e, ‖M‖F =
√∑n

i=1

∑m
j=1 |Mij |2

and its (i, j)th entry is denoted by Ai,j . The trace
norm of a matrix is denoted by ‖M‖∗ which is de-
fined as the sum of its singular values. The transpose
of a vector and a matrix denoted by u> and U>, re-
spectively. We use [n] to denote the set on integers
{1, 2, · · · , n}. The set of non-negative real numbers
is denoted by R+. The indicator function is denoted
by I[·]. For a vector u ∈ Rp we use ‖u‖1 =

∑p
i=1 |ui|,

‖u‖2 =
(∑p

i=1 |ui|2
)1/2

, and ‖u‖∞ = max1≤i≤p ui to
denote its `1, `2, and `∞ norms, respectively. The
dot product between two vectors u and u′ is denoted
by either 〈u,u′〉 or u>u′.

In collaborative filtering we assume that there is
a set of n users U = {u1, · · · , un} and a set of
m items I = {i1, · · · , im} where each user ui ex-
presses opinions about a set of items. The rat-
ing information is summarized in an n × m matrix
R ∈ {−1,+1, ?}n×m, 1 ≤ i ≤ n, 1 ≤ j ≤ m where the
rows correspond to the users and the columns corre-
spond to the items and (p, q)th entry is the rate given
by user up to the item iq. We note that the rating
matrix is partially observed and it is sparse in most
cases. We are mainly interested in recommending a
set of items for an active user such that the user has
not rated these items before.

4 Transductive Collaborating
Ranking

We now turn our attention to the main thrust of the
paper where we present our transductive collabora-
tive ranking algorithm with accuracy at top by ex-
ploiting the features of unrated data. We begin with
the basic formulation and then extend it to incorpo-
rate the unrated items.

4.1 A basic formulation

We consider a ranking problem, where, given a
set of users U and known user feedback on a set of
items I, the goal is to generate rankings of unob-
served items, adapted to each of the users’ prefer-
ences. Here we consider the bipartite setting in which
items are either relevant (positive) or irrelevant (neg-
ative). Many ranking methods have been developed
for bipartite ranking, and most of them are essentially
based on pairwise ranking. These algorithms reduce
the ranking problem into a binary classification prob-
lem by treating each relevant/irrelevant instance pair
as a single object to be classified [15].

As mentioned above, most research has concen-
trated on the rating prediction problem in CF where
the aim is to accurately predict the ratings for the
unrated items for each user. However, most applica-
tions that use CF typically aim to recommend only a
small ranked set of items to each user. Thus rather
than concentrating on rating prediction we instead
approach this problem from the ranking viewpoint
where the goal is to rank the unrated items in the
order of relevance to the user. Moreover, it is desir-
able to concentrate aggressively on top portion of the
ranked list to include mostly relevant items and push
irrelevant items down from the top. Specifically, we
propose an algorithm that maximizes the number of
relevant items which are pushed to the absolute top
of the list by utilizing the P-Norm Push ranking mea-
sure which is specially designed for this purpose [21]
.

For simplicity of exposition, let us first consider
the ranking model for a single user u. Let X+ =
{x+

1 , · · · ,x+
n+
} and X− = {x−1 , · · · ,x−n−

} be the set
of feature vectors of n+ relevant and n− irrelevant
items to user u, respectively. We consider linear rank-
ing functions where each item features vector x ∈ Rd

is mapped to a score w>x . The goal is to find pa-
rameters w for each user such that the ranking func-
tion best captures past feedback from the user. The
goal of ranking is to maximize the number of rele-
vant items ranked above the highest-ranking irrele-
vant item. We cast this idea for each user u individ-

3

ually into the following optimization problem:

min
w∈Rd

1

n+

n+∑
i=1

I
[
〈w,x+

i 〉 ≤ max
1≤j≤n−

〈w,x−j 〉
]

(1)

where I[·] is the indicator function which returns 1
when the input is true and 0 otherwise, n+ and n−

are the the number of relevant and irrelevant items
to user u, respectively.

Let us now derive the general form of our objec-
tive. We hypothesize that most users base their de-
cisions about items based on a number of latent fea-
tures about the items. In order to uncover these la-
tent feature dimensions, we impose a low-rank con-
straint on the set of parameters for all users. To
this end, let W = [w1,w2, · · · ,wn]> ∈ Rn×d de-
note the matrix of all parameter vectors for n users.
Let I+i ⊆ {1, 2, . . . ,m} and I−i ⊆ {1, 2, . . . ,m} be
the set of relevant and irrelevant items of ith user,
respectively. The overall objective for all users is for-
mulated as follows:

F(W) = λ‖W‖∗

+

n∑
i=1

 1

|I+i |
∑
j∈I+i

I

[
〈wi,xj〉 ≤ max

k∈I−i
〈wi,xk〉

],
(2)

where ‖ · ‖∗ is the trace norm (also known as nuclear
norm) which is the sum of the singular values of the
input matrix.

The objective in Eq. (2) is composed of two terms.
The first term is the regularization term and is intro-
duced to capture the factor model intuition discussed
above. The premise behind a factor model is that
there is only a small number of factors influencing
the preferences, and that a user’s preference vector is
determined by how each factor applies to that user.
Therefore, the parameter vectors of all users must lie
in a low-dimensional subspace. Trace-norm regular-
ization is a widely-used and successful approach for
collaborative filtering and matrix completion. The
trace-norm regularization is well-known to be a con-
vex surrogate to the matrix rank, and has repeatedly
shown good performance in practice [28, 7]. The sec-
ond term is introduced to push the relevant items of
each user to the top of the list when ranked based on
the user parameter vector and item features.

The above optimization problem is intractable due
to the non-convex indicator function. To design prac-
tical learning algorithms, we replace the indicator
function in (2) with its convex surrogate. To this
end, define the convex loss function ` : R 7→ R+ as
`(x) = [1− x]+. This is the widely used hinge loss in

SVM classification (see e.g., [6]) 1. This loss function
reflects the amount by which the constraints are not
satisfied. By replacing the non-convex indicator func-
tion with this convex surrogate leads to the following
tractable convex optimization problem:

F(W) = λ‖W‖∗

+

n∑
i=1

 1

|I+i |
∑
j∈I+i

`
(
〈wi,xj〉 − ‖X−i wi‖∞

)
(3)

where X−i = [x1, . . . ,xn−
i

]> is the matrix of features

of n−i irrelevant items in I−i and ‖ · ‖∞ is the max
norm of a vector.

4.2 Semi-supervised collaborative
ranking

In this part, we extend the proposed ranking idea
to learn both from rated as well as unrated items.
The motivation of incorporating unrated items comes
from the following key observations. First, we note
that commonly there is a small set of rated (either
relevant or irrelevant) items for each user and a large
number of unrated items. As it can be seen from
Eq. (2), the unrated items do not play any role in
learning the model for each user as the learning is
only based on the pair of rated items. When the fea-
ture information for items is available, it would be
very helpful if one can leverage such unrated items
in the learning-to-rank process to effectively leverage
the available side information. By leveraging both
types of rated and unrated items, we can compen-
sate for the lack of rating data. Second, the non-
randomness in observing the observed ratings creates
a bias in learning the model that may degrade the re-
sulting recommendation accuracy. Therefore, finding
a precise model to reduce the effect of bias introduced
by non-random missing ratings seems essential.

To address these two issues, we extend the basic
formulation in Eq. (2) to incorporate items with miss-
ing ratings in ranking of items for individual users.
A conservative solution is to push the items with un-
known ratings to the middle of ranked list, i.e., after
the relevant and before the irrelevant items. To do
so, let I◦i = I \

(
I+i ∪ I

−
i

)
denote the set of items un-

rated for user i ∈ U . We introduce two extra terms
in the objective in Eq. (2) to push the unrated items

1We note that other convex loss functions such as expo-
nential loss `(x) = exp(−x), and logistic loss `(x) = log(1 +
exp(−x)) also can be used as the surrogates of indicator func-
tion, but for the simplicity of derivation we only consider the
hinge loss here.

4

Ii◦ below the relevant items and above the irrelevant
items, which yields the following objective:

L(w) =
1

|I+i |
∑
i∈I+i

`

(
〈w,xi〉 ≤ max

j∈I−i
〈w,xj〉

)

+
1

|I+i |
∑
i∈I+i

`

(
〈w,xi〉 ≤ max

j∈I◦i
〈w,xj〉

)

+
1

|I◦i |
∑
i∈I◦i

`

(
〈w,xi〉 ≤ max

j∈I−i
〈w,xj〉

) (4)

Equipped with the objective of individual users, we
now turn to the final collaborating ranking objective
as:

F(W) = λ‖W‖∗

+

n∑
i=1

 1

|I+i |
∑
j∈I+i

`
(
〈wi,xj〉 − ‖X−i wi‖∞

)
+

n∑
i=1

 1

|I+i |
∑
j∈I+i

` (〈wi,xj〉 − ‖X◦i wi‖∞)

+

n∑
i=1

 1

|I◦i |
∑
j∈I◦i

`
(
〈wi,xj〉 − ‖X−i wi‖∞

),

(5)

where X◦i = [x1, . . . ,xn◦
i
]> is the matrix of n◦i un-

rated items in I◦i .

5 Experiments

In this section, we conduct exhaustive experiments to
demonstrate the merits and advantages of the pro-
posed algorithm. We conduct our experiments on
three well-known datasets MovieLens, Amazon and
CiteULike.

5.1 Datasets

• ML-IMDB. We used ML-IMDB which is a
dataset extracted from the IMDB and the Movie-
Lens 1M datasets by mapping the MovieLens
and IMDB and collecting the movies that have
plots and keywords.

• Amazon. We used the dataset of best-selling
books and their ratings in Amazon. Each book
has a one or two paragraphs of textual descrip-
tion, which has been used to have a set of fea-
tures of the books.

Table 1: Statistics of real datasets used in our exper-
iments.

Statistics ML-IMDB Amazon CiteULike

users 2,113 13,097 3,272
items 8,645 11,077 21,508
ratings 739,973 175,612 180,622
features 8,744 5,766 6,359
Density 4.05% 0.12% 0.13%

• CiteULike. It is an online free service for
managing and discovering scholarly references.
Users can add those articles that they are
interested in to their libraries. Collected articles
in a user’s library will be considered as relevant
items for that user. This dataset does not
have explicit irrelevant items and was chosen to
illustrate the effect of considering missing data
while only having relevant items.

For all above datasets, the description about the
items were tokenized and after removing the stop
words, the rest of the words were stemmed. Then
those words that have been appeared in less than 20
items and more that 20% of the items were also re-
moved [24]. At the end, the TF-IDF was applied on
the remaining words and the TF-IDF scores repre-
sented the features of the items. The statistics of the
datasets are given in Table 1. As it is shown in Ta-
ble 1, all these three datasets have high dimensional
feature space.

5.2 Metrics

We adopt the widely used metrics, Discounted Cu-
mulative Gain at n and Recall at n, for assessing the
performance of our and baseline algorithms. For each
user u, given an item i, let sk be the relevance score of
the item ranked at position k, where sk = 1/n if the
item is relevant to the user u and sk = 0 otherwise.
Discounted Cumulative Gain at n, is defined as:

DCGu@n = s1 +

n∑
k=2

sk
log2(k)

If we divide the DCGu@n by its maximum value, we
get the NDCGu@n value. Given the list of top-n
item recommendations for each user u, Recall at n
will count the number of relevant items appeared in
that list. Recall at n is defined as:

RECu@n =
|{relevant items to u} ∩ {top-n items}|

|{top-n items}|

DCG@n, NDCGu@n and REC@n will be computed
for each user and then will be averaged over all users.

5

5.3 Methodology

Given the partially observed rating matrix, we
transformed the observed ratings of all datasets from
a multi-level relevance scale to a two-level scale
(+1,−1) while 0 is considered for unobserved ratings.
We randomly selected 60% of the observed ratings for
training and 20% for validation set and consider the
remaining 20% of the ratings as our test set. To bet-
ter evaluate the results, we performed a 3-fold-cross
validation and reported the average value for our re-
sults.

5.4 Baseline Algorithms

The proposed SCR algorithm is compared to the fol-
lowing algorithms:

• Feature Based Factorized Bilinear Similar-
ity Model (FBS) [24]: This algorithm uses
bilinear model to capture pairwise dependencies
between the features.

• Collaborative User-specific Feature-based
Similarity Models (CUFSM): By using the
history of ratings for users, it learns personalized
user model across the dataset [11].

• Regression based Latent Factor Model
(RLF):2 This method incorporates the features
of items in factorization process by transforming
the features to the latent space using linear re-
gression [2]. If the learning method is Markov
Chain Monte Carlo, we name it RLF-MCMC.

• Cosine Similarity Based Recommender
(CSR): Using the similarity between features of
items, the preference score of a user on an item
will be estimated.

5.5 Robustness to not missing at ran-
dom ratings

In this section we compare the effect of incorporating
the unobserved ratings in our learning in compari-
son with excluding them from our learning. Most of
the methods in the literature ignore the unobserved
ratings and train their model only base on observed
ratings. By incorporating the unrated items in rank-
ing, our method can limit the bias caused by learning
solely based on the observed ratings and consequently
deals with the not missing at random issue of ratings.

2The implementation of this method is available in LibFM
library [20].

Table 2 shows results of comparing these two scenar-
ios for SCR on ML-IMDB. In order to see the differ-
ence between these two scenarios, we considered 70%
of the ratings for training and 30% for test to have
more ground truth for our testing. Table 2 shows
the NDCG@5, 10,15 and 20 for both scenarios and
it shows that incorporating the unobserved ratings
causes to improve the accuracy of recommendation
list. Hence, the NDCG values for top 5, 10, 15 and
20 items improved when unrated items were included
as part of the training process.

5.6 Dealing with cold-start items

We now turn to evaluating the effectiveness of SCR for
cold-start recommendation. To do so, we randomly
selected 60% of the items as our training items and
20% for validation set and considered the remaining
20% of the items as our test set. In this scenario,
baseline algorithms that are used for comparison are
CSR, FBS, CUFSM and RLF. For the experiments,
we used ML-IMDB, Amazon and CiteULike datasets.
Table 3 shows the measurement results of applying
mentioned algorithms on these datasets. For each
test, the parameters’ values producing the best rank-
ing on the validation set were selected to be used and
reported. As it can be seen from the results in Ta-
ble 3, the proposed SCR algorithm outperformed all
other baseline algorithms and provided a recommen-
dations with higher quality in comparison to other
methods. We can also see from the results of Table 3
that for the ML-IMDB dataset, the improvement in
terms of REC@10 is significant compared to other
datasets. Since the density of this dataset is much
higher than other two datasets, this observation in-
dicates that our method is more effective in utilizing
side information compared to other methods. These
results demonstrate the effectiveness of SCR in com-
parison with other state-of-the-art algorithms. SCR
was able to outperform other state-of-the-art algo-
rithms by considering the missing data and focus-
ing on top of the recommendation list for cold-start
items.

6 Conclusions

In this paper we introduced a semi-supervised collab-
orative ranking model by leveraging side information
about both observed and missing ratings in collabo-
ratively learning the ranking model. In the learned
model, unrated items are conservatively pushed af-
ter the relevant and before the irrelevant items in the
ranked list of items for each individual user. This
crucial difference greatly boosts the performance and
limits the bias caused by learning only from sparse

6

Table 2: Results of employing missing ratings versus ignoring them on ML-IMDB. λ = 0.6 is regularization
parameter, h = 10 is dimension of latent features, T = 100 is the number of iterations.

Algorithm: SCR NDCG@5 NDCG@10 NDCG@15 NDCG@20

Observed ratings 1.1690 2.2218 2.8362 3.2849
Observed + missing ratings 1.1794 2.2405 2.8585 3.3096

non-random observed ratings. The proposed algo-
rithm is compared with seven baseline algorithms on
three real world datasets that demonstrated the ef-
fectiveness of proposed algorithm in addressing cold-
start problem and mitigating the data sparsity prob-
lem, while being robust to sampling of missing rat-
ings.

References

[1] G. Adomavicius and A. Tuzhilin. Toward the
next generation of recommender systems: A sur-
vey of the state-of-the-art and possible exten-
sions. IEEE Transactions on Knowledge and
Data Engineering, 17(6):734–749, 2005.

[2] D. Agarwal and B.-C. Chen. Regression-based
latent factor models. In SIGKDD, pages 19–28.
ACM, 2009.

[3] S. Agarwal. The infinite push: A new support
vector ranking algorithm that directly optimizes
accuracy at the absolute top of the list. In SDM,
pages 839–850. SIAM, 2011.

[4] S. Balakrishnan and S. Chopra. Collaborative
ranking. In ACM WSDM, pages 143–152. ACM,
2012.

[5] I. Barjasteh, R. Forsati, F. Masrour, A.-H. Esfa-
hanian, and H. Radha. Cold-start item and user
recommendation with decoupled completion and
transduction. In Proceedings of ACM RecSys,
pages 91–98. ACM, 2015.

[6] C. J. Burges. A tutorial on support vector ma-
chines for pattern recognition. Data mining and
knowledge discovery, 2(2):121–167, 1998.

[7] E. J. Candès and T. Tao. The power of con-
vex relaxation: Near-optimal matrix comple-
tion. Information Theory, IEEE Transactions
on, 56(5):2053–2080, 2010.

[8] K. Christakopoulou and A. Banerjee. Collabora-
tive ranking with a push at the top. In WWW,
pages 205–215. International World Wide Web
Conferences Steering Committee, 2015.

[9] P. Cremonesi, Y. Koren, and R. Turrin. Per-
formance of recommender algorithms on top-n
recommendation tasks. In ACM RecSys, pages
39–46. ACM, 2010.

[10] R. Devooght, N. Kourtellis, and A. Mantrach.
Dynamic matrix factorization with priors on un-
known values. In ACM SIGKDD, pages 189–198.
ACM, 2015.

[11] A. Elbadrawy and G. Karypis. User-specific
feature-based similarity models for top-n recom-
mendation of new items. ACM Transactions
on Intelligent Systems and Technology (TIST),
6(3):33, 2015.

[12] K. Järvelin and J. Kekäläinen. Ir evaluation
methods for retrieving highly relevant docu-
ments. In ACM SIGIR, pages 41–48. ACM,
2000.

[13] Y. Koren, R. Bell, and C. Volinsky. Matrix fac-
torization techniques for recommender systems.
Computer, (8):30–37, 2009.

[14] J. Lee, S. Bengio, S. Kim, G. Lebanon, and
Y. Singer. Local collaborative ranking. In Pro-
ceedings of the 23rd international conference on
World wide web, pages 85–96. ACM, 2014.

[15] T.-Y. Liu. Learning to rank for information re-
trieval. Foundations and Trends in Information
Retrieval, 3(3):225–331, 2009.

[16] B. M. Marlin and R. S. Zemel. Collaborative
prediction and ranking with non-random missing
data. In RecSys, pages 5–12. ACM, 2009.

[17] B. M. Marlin, R. S. Zemel, S. T. Roweis, and
M. Slaney. Collaborative filtering and the miss-
ing at random assumption. In UAI, pages 267–
275, 2007.

[18] F. Masrour, I. Barjesteh, R. Forsati, A.-H. Es-
fahanian, and H. Radha. Network completion
with node similarity: A matrix completion ap-
proach with provable guarantees. In Proceedings
of the 2015 IEEE/ACM ASONAM, pages 302–
307. ACM, 2015.

7

Table 3: Results on cold-start items. λ, µ1 and β are regularization parameters, h is dimension of latent
features, l is the number of similarity functions and T is the number of iterations.

Algorithms Hyperparameters DCG@10 REC@10

M
L

-I
M

D
B CSR — 0.1282 0.0525

RLF h = 15 0.0455 0.0155
CUFSM l = 1, µ1 = 0.005 0.2160 0.0937

FBS λ = 0.01, β = 0.1, h = 5 0.2270 0.0964
SCR λ = 0.6, h = 10, T = 200 0.2731 0.2127

A
m

a
z
o
n CSR — 0.0228 0.1205

RLF h = 30 0.0076 0.0394
CUFSM l = 1, µ1 = 0.25 0.0282 0.1376

FBS λ = 0.1, β = 1, h = 1 0.0284 0.1392
SCR λ = 0.6, h = 10, T = 200 0.1195 0.1683

C
it

e
U

L
ik

e CSR — 0.0684 0.1791
RLF h = 75 0.0424 0.0874

CUFSM l = 1, µ1 = 0.25 0.0791 0.2017
FBS λ = 0.25, β = 10, h = 5 0.0792 0.2026
SCR λ = 0.6, h = 10, T = 200 0.0920 0.2243

[19] S.-T. Park and W. Chu. Pairwise preference re-
gression for cold-start recommendation. In Rec-
Sys, pages 21–28. ACM, 2009.

[20] S. Rendle. Factorization machines with libfm.
ACM Transactions on Intelligent Systems and
Technology (TIST), 3(3):57, 2012.

[21] C. Rudin. The p-norm push: A simple convex
ranking algorithm that concentrates at the top
of the list. The Journal of Machine Learning
Research, 10:2233–2271, 2009.

[22] M. Saveski and A. Mantrach. Item cold-start
recommendations: learning local collective em-
beddings. In RecSys, pages 89–96. ACM, 2014.

[23] A. I. Schein, A. Popescul, L. H. Ungar, and
D. M. Pennock. Methods and metrics for cold-
start recommendations. In SIGIR, pages 253–
260. ACM, 2002.

[24] M. Sharma, J. Zhou, J. Hu, and G. Karypis.
Feature-based factorized bilinear similarity
model for cold-start top-n item recommenda-
tion. In SDM, 2015.

[25] Y. Shi, M. Larson, and A. Hanjalic. List-wise
learning to rank with matrix factorization for
collaborative filtering. In ACM RecSys, pages
269–272. ACM, 2010.

[26] Y. Shi, M. Larson, and A. Hanjalic. Collab-
orative filtering beyond the user-item matrix:
A survey of the state of the art and future

challenges. ACM Computing Surveys (CSUR),
47(1):3, 2014.

[27] V. Sindhwani, S. S. Bucak, J. Hu, and A. Mo-
jsilovic. One-class matrix completion with low-
density factorizations. In ICDM, pages 1055–
1060. IEEE, 2010.

[28] N. Srebro, J. Rennie, and T. S. Jaakkola.
Maximum-margin matrix factorization. In Ad-
vances in neural information processing systems,
pages 1329–1336, 2004.

[29] H. Steck. Training and testing of recommender
systems on data missing not at random. In KDD,
pages 713–722. ACM, 2010.

[30] H. Steck. Gaussian ranking by matrix factoriza-
tion. In Proceedings of the 9th ACM Conference
on Recommender Systems, pages 115–122. ACM,
2015.

[31] M. Volkovs and R. S. Zemel. Collaborative rank-
ing with 17 parameters. In Advances in Neu-
ral Information Processing Systems, pages 2294–
2302, 2012.

[32] M. Weimer, A. Karatzoglou, Q. V. Le, and
A. Smola. Maximum margin matrix factoriza-
tion for collaborative ranking. NIPS, 2007.

[33] T. Zhou, H. Shan, A. Banerjee, and G. Sapiro.
Kernelized probabilistic matrix factorization:
Exploiting graphs and side information. In SDM,
volume 12, pages 403–414. SIAM, 2012.

8

