
A Scalable People-to-People Hybrid Reciprocal Recommender Using Hidden
Markov Models

Ammar Alanazi∗ Michael Bain†

Abstract
Most existing reciprocal recommender systems use either
profile similarity or interaction similarity to recommend
new matches, assuming that user preferences are static
and ignoring temporal aspects of user behaviour. This
paper takes a different approach, and addresses the issue
of representing user preferences as dynamic. We introduce
a new representation for changes in user preferences and
use that representation in creating a reciprocal recommender
system applied to online dating.

In this paper, we develop a general framework for com-
bining a Hidden Markov model (HMM) content-based recip-
rocal recommender system with collaborative filtering tech-
niques to create a unified hybrid recommender. Additionally,
a new similarity measure is introduced to rank the recom-
mendations generated by this hybrid recommender. More-
over, we propose, design and implement a reciprocal recom-
mender system using the suggested framework and the new
similarity measure. Evaluation of this system shows that it
generates better recommendations than existing systems in
a time-efficient manner.

1 Introduction

Most of the existing work on recommender systems
is built on the assumption that users’ behaviours are
static and do not change over time. More recently, this
assumption has begun to be relaxed in work on temporal
recommendation [20, 22, 13]. However, to the best of
our knowledge no work has addressed the problem of
temporal reciprocal recommendation, such as occurs in
the context of online dating, employment websites, and
other people-to-people interactions.

Analysis of real-world data from a dating website
on people-to-people interactions [2] shows that people’s
behaviour and activity levels do change over time, which
leads to the conclusion that we need a dynamic model
to generate better recommendations.

To capture these temporal changes, in this paper we
describe a scalable hybrid Hidden Markov Model [19]
reciprocal recommender system that captures how each
user’s behaviour evolves over time and generates recom-
mendations accordingly. The proposed hybrid recom-
mender combines collaborative filtering techniques with

∗King Abdulaziz City for Science and Technology, National
Center for Computer Technology and Applied Math, Riyadh,

Saudi Arabia
†The University of New South Wales, Faculty of Engineering,

Sydney, Australia

the HMM recommender proposed in [3] to generate rec-
ommendations.

In this paper we introduce a novel hybrid recom-
mender system that combines the ability of collabo-
rative filtering methods to generate recommendations
with the high performance of the predictions of the
Hidden Markov model recommender that was proposed
in [3], to generate recommendations in reciprocal do-
mains with high success rates. The Collaborative Fil-
tering Hidden Markov Models Hybrid Recommender
CFHMM-HR was tested on an industrial-scale data
that was acquired from a real dating website and the
results show that CFHMM-HR outperforms its coun-
terparts.

Moreover, CFHMM-HR is a scalable hybrid recom-
mender that can run in real-world applications. Al-
though CFHMM-HR was only tested on an online-
dating dataset, we believe that the same model can be
applied in other reciprocal domains after a few changes
in the preprocessing level.

The key contribution we present in this paper is
a novel hybrid recommender that combines techniques
from content-based recommender systems and collabo-
rative filtering recommender systems to generate rec-
ommendations in a people-to-people domain and which
outperforms the previous recommender systems that
were reported on a similar domain. In particular, the
proposed hybrid recommender offers the following novel
features:

• It presents a novel hybrid recommender that gen-
erates recommendations with high success rate in
comparison to its counterparts.

• It presents a recommender that can work on indus-
trial sized datasets in a timely manner and that can
be deployed online.

• It introduces a new similarity measure that min-
imises the number of false positives and maximises
the number of true positives predicted by the rec-
ommender. Consequently, the new similarity mea-
sure maximises the success rate of the recommen-
dations generated by the model.



2 Related Work

Although recommender systems have been investigated
thoroughly in the literature, research on temporal as-
pects of the recommendation problem has only at-
tracted attention in the past few years. Most of the
time-aware recommenders proposed in the literature
[13, 20, 22, 11, 26, 10, 12] are variations of the Matrix
Factorisation (MF) model. However, initial experimen-
tations on MF in people-to-people reciprocal recommen-
dation did not work well [23].

The area of people-to-people reciprocal recom-
menders has attracted little research attention in com-
parison to traditional item-to-user recommenders. Al-
though some interesting models were proposed in the
literature such as [1, 14, 8, 23, 15, 7, 24, 17], to the best
of our knowledge no one has addressed the temporal
aspect of the problem explicitly.

3 Dataset

The dataset used to test the model is a real-world
commercial dataset from a dating website. In the dating
domain, there are users who initiate interactions, we
call them senders, and people who receive interactions,
and we call them recipients. Senders and recipients
can overlap which means a user can be a recipient
and a sender at the same time. There are different
forms of interactions that can be exchanged such as
predefined messages, emails and chats. In this research,
we use the predefined messages, we call them messages,
to train and test our model because this is the first
method of communication between users in most cases
and depending on the success of these messages, users
can further their communications and exchange other
forms of interactions.

When a predefined message is sent, the recipient
can ignore this message and not reply to it, reply with
a positive predefined message or reply with a negative
one. We have only considered messages that have
replies to them and classify them as positive or negative
interactions based on the reply message.

The dataset has over 3 million users and over
80 million interactions exchanged between these users.
Therefore, using the whole dataset is not feasible and
representative subsets have to be used instead. To
generate training and testing data for our model, a
time period was randomly selected (e.g. from March
1st to March 15th, 2009) and all active users during this
time period were used as the experiment population.
Then, for users in the selected population, all their
interactions, even interactions outside the selected time
period, were obtained and used to build the model.
Several populations were generated and average results
across these populations will be presented later in this

paper.
The average population size is over 195,000 users

of which a little over 16,000 were recipients and about
190,000 were senders. These users exchanged over two
million messages amongst themselves with an average
baseline success rate of 15%. Each population was
divided into 70% training data and 30% test data.

This dataset was chosen because it is a real-world
commercial reciprocal dataset that has temporal dy-
namics. Although users’ life cycles are mostly short in
a dating website [2], there are several life-cycle phases
to capture and these changes between phases have their
effects on the decision of initiating an interaction and
the decision of accepting one.

4 Evaluation Metrics

In applications that require generating actual recom-
mendations to users, we are interested in measuring how
many of these predictions will be used [21, 4, 9]. Dating
is one of these applications.

In this paper we use the following two metrics that
measure the usage of the recommendations: Success
Rate, which is defined as the proportion of generated
recommendations that are correct and Recall, which is
the proportion of successful interactions in the test set
that was predicted successfully by the model [18].

More formally, let R be the set of recommendations
generated by the model, R+ be the subset of R that is
correct, I+ be the set of successful interactions in the
test data and Size(S) is the size of a set S.

SuccessRate =
Size(R+)

Size(R)
=

TP

TP + FP

Recall =
Size(R+)

Size(I+)
=

TP

TP + FN

Generally, recommender systems in online dating
applications are required to generate a pre-determined
number of recommendations and in this case the most
important evaluation metric is Success Rate [21]. How-
ever, since experiments in this paper are all offline ex-
periments that are performed on historical data, we will
present Recall values as well, but the focus of this re-
search is to improve the Success Rate.

Additionally, we will use the F-measure, which is
a weighted average of success rate and recall [18]. The
general formula to calculate F-measure is:

Fβ = (1+β2).
SuccessRate.Recall

(β2.SuccessRate) +Recall
where β > 0

When β = 1, similar weights are given to both
success rate and recall. We decided to use β = 0.25 to
put more emphasis on success rate since it is the focus
of this research.



5 A Hidden Markov Models Content-Based
Recommender

Most of the existing recommendation algorithms deal
with the recommendation problem as a two-state prob-
lem, in which all historical data is considered as one
state and the recommendation problem becomes pre-
dicting the next state. In this research, we propose a
model that considers the temporal aspects of the prob-
lem and utilises them to better personalise the recom-
mendations. We track the changes of the graph over
multiple time periods and observe how it evolves over
time then use this gained knowledge to predict the fu-
ture graph.

5.1 Design Hidden Markov models have been proven
to work successfully in a wide range of applications
that require a temporal model with the capabilities of
recognising sequences [20, 5]. Therefore, we decided
that HMMs will be our model of choice to represent
the dynamically changed user preference.

To track the changes of user preference over multi-
ple time periods, we present here a novel representation
for interactions. That is, we represent each interaction
Ik in the data as a sequence of size n as follows:

Ik = (Ok−n, Ok−n+1, . . . , Ok−2, Ok−1, Ok)

if k ≥ n

or Ik = (φ, φ, . . . , O0, . . . , Ok−2, Ok−1, Ok)

if k < n

where Ok is the kth observation vector.
Each observation vector represents a message in the

dataset and it consists of:

• A selected set of profile data for the sender and
the recipient: gender, age, location, marital status,
sexuality, number of profile photos, body type,
height, occupation industry, occupation level and
diet.

• A set of derived data : the difference in age
between the sender and the recipient and the
physical distance between them (in kilometres).

• A set of temporal data : activity in the last 7 days,
activity in the last 28 days and number of days since
receiving the previous message. Activity here is
defined as the difference between received messages
and sent replies and these features are calculated
for the recipient only.

Another way to describe the suggested new repre-
sentation of interactions is, instead of considering the
current message (Messagek) as an isolated observation

(i.e. Messagek is represented as Ok), we consider it
as a sequence of events leading to Ok taking place (i.e.
Messagek is represented as Ik). Each interaction is then
classified to a successful or a failed interaction. The in-
teraction is deemed successful if Messagek received a
positive reply. Otherwise, the interaction is classified as
a failed one in the cases of no-reply or a negative reply.

Following that, we designed a HMM system that we
can train using a subset of the dataset (training data)
and then use the resulted model as a recommender.
More details and experimental results of this model can
be found in [3].

6 A Hybrid Recommender Combining
Collaborative Filtering and Hidden Markov
Models

6.1 Limitations of the Content-Based HMM
Recommender Although the experimental results of
the content-based HMM recommender [3] are promis-
ing, there is one main limitation to that model. The
only way of actually generating recommendations is to
use brute-force to generate all the possible interactions
that could occur and then pass them through the model
to predict whether they will succeed or fail. However,
this is not feasible due to the size of the dataset. Even
with a small sample of 1,000 recipients, there is an aver-
age of 12,000 senders interacting with these recipients.
Consequently, brute-force will produce 12,000,000 inter-
actions to be validated and this will not work in a timely
manner in a real-world recommender. Moreover, that
sample is too small to be representative of the whole
dataset.

6.2 Design One of content-based recommenders’
strengths is that they can be used as filters on recom-
mendations generated by other methods [16]. On the
other hand, collaborative filtering recommenders have
the ability to generate a list of recommendations by util-
ising the similarities between the users.

Therefore, to overcome the limitations of the HMM
recommender and be able to generate recommendations,
we decided to use a collaborative filtering recommender
first to generate the recommendations. Then, we test
the top N recommendations using the HMM model and
filter out the unsuccessful predictions.

The CFHMM-HR model works in the following
order (Figure 1):

• Training data is used to train the HMM recom-
mender and used by the collaborative filtering rec-
ommender to generate the initial list of recommen-
dations.

• The initial list of recommendations gets validated



by the HMM recommender. The output of this step
is another list, the second list, of recommendations
which is a smaller subset of the initial list.

• The second list of recommendations gets ranked
using a combination measure of likelihood and
collaborative filtering similarity and the final list
of recommendations is generated.

To represent the messages of the initial list of recom-
mendations as interactions (see above), we assume that
each one of these messages are received immediately af-
ter the last message of the training data for each user.
Formally:

Ir = (Otrk−n+1
, Otrk−n+2

, . . . , Otrk , Or)

if k ≥ n− 1

or Ir = (φ, φ, . . . , O0, . . . , Otrk−1
, Otrk , Or)

if k < n− 1

where trk is the last message in the training data for
each user, r is the recommended message, Ox is the
observation vector for the message x and Ix is the
message x represented as an interaction.

The model is built so that it can work with any
collaborative filtering recommender as long as it gener-
ates the initial list of recommendations in a compatible
syntax. For the collaborative filtering part of the recom-
mender, we experimented with three different models:
Basic CF+ [14], SIM-CF [23] and ProCF [8]. These
models were selected because SIM-CF [23] is the model
that was chosen to be the recommender for the dating
website that we obtained its dataset for this research
and SIM-CF’s main strength is its high recall. ProCF
[8] is one of the best performing models, success rate
wise, reported on the same dataset. Finally, Basic CF+
[14] is a simple model that implements the basic idea of
collaborative filtering in an easy to understand way.

In each experiment, the HMM part of CFHMM-HR
receives a list of the top 200 candidates for each user
from the CF recommender. The HMM recommender
then filters and re-ranks that list to get the top 50.

Since CFHMM-HR receives the initial list of recom-
mendations with their similarity scores from a CF rec-
ommender and we have no control over the similarity
measure used in that CF recommender, it is not possi-
ble to derive a combined similarity measure from first
principles. Instead, we derive a new heuristic similar-
ity measure that combines the similarity score received
from the CF recommender with the likelihood values
generated by the HMM recommender. The new similar-
ity measure was engineered to assure that each element
of the measure has the required effect.

The final list of recommendations generated by
CFHMM-HR is ranked based on this new heuristic
similarity measure we call HMMSIM . The formula
to calculate HMMSIM is as follows:

HMMSIM(mi) = ∆likelihood(mi) + sim(mi) + α

where:

α =

{
large positive constant, if ∆likelihood(mi) ≥ 0

0, otherwise

and:

∆likelihood(mi) = likelihoodsuccess(mi)−likelihoodfailure(mi)

Also, sim(mi) is the similarity, between mi’s sender
and mi’s recipient, generated by the CF recommender
for the message mi

One of the findings we discovered during the exper-
imentations on the HMM content-based recommender
[3] is that it is a conservative recommender that tends
to under-predict in most cases. However, its predictions
are highly reliable. On the other hand, we noticed that
the CF recommenders tend to over-predict both true
positives and false positives. Therefore, the main effect
of adding ∆likelihood(mi) in HMMSIM is to minimise
the number of false positives predicted by sim(mi) by
demoting their score.

Further, since the predictions of the HMM rec-
ommender are highly reliable, we want the messages
that are predicted to be successful by it to be on the
top of the list. Therefore, we add the large constant
α to promote these messages to the top of the list
(∆likelihood(mi) ≥ 0 means mi is predicted to be suc-
cessful).

Additionally, we find that ∆likelihood(mi) ranges
between -15 and +15, while sim(mi) value can be
over 180 for popular users. Which means that in
such cases of popular users with high sim(mi) values,
the addition of ∆likelihood(mi) will not be sufficient to
have the required effect of demoting the overall score
HMMSIM . Therefore, the addition of α balances the
weights of sim(mi) and ∆likelihood(mi) as well.

6.3 Implementation The Hidden Markov models
Toolkit (HTK) [25] was used to implement the content-
based Hidden Markov models part of the recommender
and Java was used to implement all the preprocessing
and post-processing tools.

7 Experimental Results

This proposed model was also evaluated using the same
dataset described in Section 3. Users of the website



Figure 1: The framework for CFHMM-HR.

did not have access to recommendations generated by
our model and therefore the model was evaluated using
historical data.

7.1 CFHMM-HR with Basic CF+ In this exper-
iment we used the Basic CF+ [14] as the CF recom-
mender. Comparing the accuracy of the recommenda-
tions between Basic CF+ alone and CFHMM-HR with
Basic CF+ as the CF recommender shows a noticeable
overall improvement. The success rate of CFHMM-HR
for top 50 recommendations is 15.5% more than the
success rate of Basic CF+ and for the top 10 recom-
mendations it is 18.2% more. The recall of the top 50
recommendations is 0.9% more in CFHMM-HR while
the recall of the top 10 recommendations is the same in
both cases. Please refer to Table 1 for detailed results.

7.2 CFHMM-HR with SIM-CF This section
presents the experimental evaluation of CFHMM-HR
using SIM-CF [23] as the CF recommender. There is
an improvement in the success rate and a slight loss of
recall. In the top 50 recommendations, CFHMM-HR
improves the success rate by 5.7% while losing 0.6% re-
call. Similarly, in the top 10 recommendations there is
an improvement of 5.1% in success rate and a setback
of 2.9% in recall when using the CFHMM-HR instead
of using the SIM-CF alone. Using the F0.25 score to
evaluate the overall performance, CFHMM-HR outper-

Table 1: A comparison between the results of Basic
CF+ and the result of CFHMM-HR (n = 5).

Basic CF+
Rank Success Rate Recall F0.25 score
top 10 0.252 0.034 0.183
top 20 0.235 0.057 0.199
top 30 0.226 0.076 0.202
top 40 0.219 0.092 0.203
top 50 0.213 0.105 0.201

CFHMM-HR
Rank Success Rate Recall F0.25 score
top 10 0.434 0.034 0.256
top 20 0.406 0.060 0.303
top 30 0.388 0.082 0.318
top 40 0.376 0.099 0.323
top 50 0.368 0.114 0.325

Table 2: A comparison between the results of SIM-CF
and the result of CFHMM-HR (n = 5).

SIM-CF
Rank Success Rate Recall F0.25 score
top 10 0.296 0.107 0.268
top 20 0.279 0.163 0.268
top 30 0.265 0.202 0.261
top 40 0.256 0.234 0.255
top 50 0.250 0.260 0.250

CFHMM-HR
Rank Success Rate Recall F0.25 score
top 10 0.347 0.078 0.289
top 20 0.341 0.146 0.316
top 30 0.327 0.191 0.314
top 40 0.314 0.223 0.307
top 50 0.307 0.254 0.303

forms SIM-CF in all top ranks. More detailed results
are presented in Table 2.

7.3 CFHMM-HR with ProCF Here we present
the results of CFHMM-HR with ProCF [8] as the CF
part of it. We notice an improvement in success rate
and a small drop in recall for the top 30 ranks and
below. For the top 50 recommendations, CFHMM-HR
has 18.9% more success rate than ProCF alone and 0.5%
more recall. For the top 10 recommendations, CFHMM-
HR shows a 20.2% increase in success rate and a 0.3%
decrease in recall. Using the F0.25 score to evaluate the
overall performance, CFHMM-HR outperforms ProCF
in all top ranks. Please refer to Table 3 for more results.



Table 3: A comparison between the results of ProCF and the result of CFHMM-HR (n = 5).
ProCF

Rank Success Rate Recall F0.25 score
top 10 0.485 0.032 0.266
top 20 0.471 0.048 0.310
top 30 0.455 0.059 0.326
top 40 0.448 0.068 0.337
top 50 0.440 0.074 0.341

CFHMM-HR
Rank Success Rate Recall F0.25 score
top 10 0.687 0.029 0.294
top 20 0.667 0.042 0.354
top 30 0.653 0.058 0.407
top 40 0.642 0.070 0.434
top 50 0.629 0.079 0.447

8 Analysis of Run-Time

Although the main focus of this research is to find a
recommendation model that identifies temporal changes
and utilises them to better understands user behaviour,
there is another aim that is of similar importance. The
other aim is that the final model is scalable, time-
efficient and can be deployed in a real-world application.

To demonstrate the efficiency of CFHMM-HR, we
have calculated the run-time for every step the recom-
mender performs over a large number of experiments.
These experiments were run on a Windows Server 2008
machine with the following specifications: Intel Xeon
CPU, 2.80 GHz, 4 processors, 32 GB RAM.

The typical scenario for running CFHMM-HR on-
line is as follows:

1. Train the HMM part of CFHMM-HR on a large
training data sample. This step can be performed
offline and there is no need for frequent re-training.
We believe that repeating this step once every
month would suffice.

2. Train the CF part of CFHMM-HR overnight. This
step needs to be repeated more frequently.

3. Generate the initial list of recommendations from
the CF recommender.

4. Test, filter and re-rank the initial list of recom-
mendations using the latest trained HMM recom-
mender. This step needs to be performed overnight
and repeated more frequently as well.

5. Send the final list of recommendations to users.

The run-time for training the HMM recommender
is shown in Table 4. The average time it takes per
message is 106 milliseconds and we suggest using a
sufficiently large representative training sample (1-2
million messages). 94% of the time taken in training
is spent by the HTK tools that were used to implement
the HMM recommender and the remaining 6% is spent
by the Java software tool. Moreover, of the time
spent by the Java software tool, 86% was spent in
input/output operations to process the HTK formatted

files. We cannot estimate the proportion of time
spent in input/output operation by the HTK tools
but we believe it is similar to the Java software tool.
The HTK toolkit requires the data to be stored in
specially formatted files on the hard disk drive (HDD)
which adds a time overhead for opening these files and
reading the data and in this case the overhead consumes
about 80% of the total time. To deploy CFHMM-
HR on an online application, we recommend developing
alternative HMM software tools that read the data
directly from the DBMS or from memory to eliminate
the time overhead.

The run-time of the CF part of CFHMM-HR varies
depending on the algorithm used. The three algorithms
that were used in this research have been tested in an
online trial and they run efficiently [23].

Testing the initial recommendation list by the HMM
recommender run-time is presented in Table 5. It takes
an average of 8.8 milliseconds to test one message of
which 20% is spent by the HTK tools and the remain-
ing 80% is spent by the Java software tool. About 88%
of the Java software tool time is spent on input/output
operations to generate the HTK formatted files. This
leads us to the same conclusion that developing alter-
native HMM software tools that read the data directly
from the DBMS or from memory would minimise the
run-time significantly.

9 Discussion

CFHMM-HR is a general framework for combining CF
techniques with the HMM content-based recommender
in a two-step hybrid recommender. Such a combination
overcomes one of the main shortcomings of the HMM
recommender [3] which is its inability to generate actual
recommendations. It also improves the success rate
of the CF recommenders considerably. However, the
improvement of CFHMM-HR depends on the initial list
of recommendations generated by the CF recommender.
For example, the best success rate for CFHMM-HR is
when it is combined with ProCF and that is because of
the three CF methods we combined with the HMM CB
recommender, ProCF is the one with the highest success



Table 4: Average run-time for training the HMM recommender (per message).

Total HTK Tools
Java Software Tool

DB Operations I/O Operations Other
Time (msec) 106.131 99.259 0.969 5.894 0.009

Percentage 93.52% 0.91% 5.55% 0.01%

Table 5: Average run-time for HMM recommender testing (per message).

Total HTK Tools
Java Software Tool

DB Operations I/O Operations Other
Time (msec) 8.787 1.800 0.761 6.213 0.013

Percentage 20.49% 8.66% 70.71% 0.14%

rate. On the other hand, the best recall for CFHMM-
HR is when it is combined with SIM-CF because it is
the model with the highest recall. Nevertheless, in all
experimentations performed in this research, CFHMM-
HR outperforms the use of the CF recommender alone
in success rate.

However, while it is possible to deploy CFHMM-HR
in an online application in its current setup, we believe
that this is not the ideal setup and more optimisation
is needed. Mainly, we suggest developing alternative
HMM software tools instead of using the HTK toolkit.
Because HTK is designed to read data from files stored
on HDD, a large proportion of the run-time of CFHMM-
HR is spent on writing and reading these files. We
estimate that the time overhead caused by the I/O
operations is about 80% of the reported run-time and we
recommend developing HMM tools that read the data
directly from the DBMS or from memory.

In the domain of online dating the interaction vec-
tors of users tend to be sparse and short. Initial ex-
perimentations of collaborative filtering methods that
are popular with researchers, such as matrix factoriza-
tion MF, did not work well [23]. A possible reason for
that is that in the domain of online dating the inter-
action matrix is Boolean (positive or negative) and in
such cases applying matrix factorisation is harder than
applying it on a numerical matrix (ratings) [6]. There-
fore, we compared our model to other models that are
known to work on such data.

10 Conclusion and Future Work

In this paper we presented a hybrid model for people-to-
people recommendations using HMM that can capture
the temporal changes of users’ behaviours and generates
better personalised recommendations based on this.
Evaluating this model using a commercial dataset for
a dating website shows a significant improvement in the
success rate of recommendations.

The model combines a HMM content-based recom-
mender and a collaborative filtering algorithm to gener-
ate recommendations. In future, we plan on using other
dynamic models to represent the recommender such as
coupled Hidden Markov models or the Collaborative
Kalman Filtering model [22]. Moreover, in CFHMM-
HR, the recommendations are generated by a recipro-
cal CF method and then re-ranked using the temporal
HMM content-based recommender. Incorporating the
temporal dynamics in the CF part of the recommender
as well would be an interesting extension to our model.

Acknowledgments

We would like to thank Smart Services Cooperative Re-
search Centre and their industrial partners for providing
the datasets.

References

[1] J. Akehurst, I. Koprinska, K. Yacef, L. Pizzato, J. Kay,
and T. Rej. CCR: A content-collaborative reciprocal
recommender for online dating. In Proceedings of
the 22nd International Joint Conference on Artificial
Intelligence - Volume 3, IJCAI’11, pages 2199–2204.
AAAI Press, 2011.

[2] A. Alanazi and M. Bain. Ranking interaction-based
collaborative filtering recommendations using temporal
features in online dating. In K. Soliman, editor, Inno-
vation and Sustainable Competitive Advantage: From
Regional Development to World Economies, volume 1-
5, pages 450–457. Int Business Information Manage-
ment Assoc-IBIMA, 2012. 18th IBIMA Conference,
Istanbul, TURKEY, MAY 09-10, 2012.

[3] A. Alanazi and M. Bain. A people-to-people content-
based reciprocal recommender using Hidden Markov
models. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys ’13, pages 303–306,
New York, NY, USA, 2013. ACM.

[4] A. Bellogin, P. Castells, and I. Cantador. Precision-
oriented evaluation of recommender systems: An algo-



rithmic comparison. In Proceedings of the 5th ACM
Conference on Recommender Systems, RecSys ’11,
pages 333–336, New York, NY, USA, 2011. ACM.

[5] J. A. Bilmes. What hmms can do. IEICE Transac-
tions on Information and Systems, E89-D(3):869–891,
March 2006.

[6] W. Buntine and A. Jakulin. Discrete component
analysis. In C. Saunders, M. Grobelnik, S. Gunn, and
J. Shawe-Taylor, editors, Subspace, Latent Structure
and Feature Selection, volume 3940 of Lecture Notes
in Computer Science, pages 1–33. Springer Berlin
Heidelberg, 2006.

[7] X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. Kim,
P. Compton, and A. Mahidadia. Collaborative filter-
ing for people to people recommendation in social net-
works. In J. Li, editor, AI 2010: Advances in Artifi-
cial Intelligence, volume 6464 of Lecture Notes in Com-
puter Science, pages 476–485. Springer Berlin Heidel-
berg, 2011.

[8] X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. Kim,
P. Compton, and A. Mahidadia. ProCF: Probabilistic
collaborative filtering for reciprocal recommendation.
In J. Pei, V. Tseng, L. Cao, H. Motoda, and G. Xu,
editors, Advances in Knowledge Discovery and Data
Mining, volume 7819 of Lecture Notes in Computer
Science, pages 1–12. Springer Berlin Heidelberg, 2013.

[9] P. G. Campos, F. Dı́ez, and I. Cantador. Time-
aware recommender systems: A comprehensive survey
and analysis of existing evaluation protocols. User
Modeling and User-Adapted Interaction, 24(1-2):67–
119, Feb. 2014.

[10] F. C. T. Chua, R. J. Oentaryo, and E. Lim. Mod-
eling temporal adoptions using dynamic matrix fac-
torization. In IEEE 13th International Conference on
Data Mining, number Dallas,, pages 91–100, TX, USA,
December 2013.

[11] S. Gultekin and J. Paisley. A collaborative kalman
filter for time-evolving dyadic processes. In Proceedings
of the IEEE International Conference on Data Mining,
ICDM ’14, pages 140–149, Washington, DC, USA,
2014. IEEE Computer Society.

[12] B. Ju, Y. Qian, M. Ye, R. Ni, and C. Zhu. Using dy-
namic multi-task non-negative matrix factorization to
detect the evolution of user preferences in collaborative
filtering. PLoS ONE, 10(8):e0135090, 08 2015.

[13] Y. Koren. Collaborative filtering with temporal dy-
namics. Commun. ACM, 53(4):89–97, April 2010.

[14] A. Krzywicki, W. Wobcke, X. Cai, A. Mahidadia,
M. Bain, P. Compton, and Y. Kim. Interaction-based
collaborative filtering methods for recommendation in
online dating. In L. Chen, P. Triantafillou, and T. Suel,
editors, Web Information Systems Engineering, AI
WISE 2010, volume 6488 of Lecture Notes in Computer
Science, pages 342–356. Springer Berlin / Heidelberg,
2010.

[15] L. Li and T. Li. MEET: A generalized framework for
reciprocal recommender systems. In Proceedings of the
21st ACM International Conference on Information

and Knowledge Management, CIKM ’12, pages 35–44,
New York, NY, USA, 2012. ACM.

[16] M. J. Pazzani and D. Billsus. Content-based recom-
mendation systems. In P. Brusilovsky, A. Kobsa, and
W. Nejdl, editors, The Adaptive Web, volume 4321
of Lecture Notes in Computer Science, pages 325–341.
Springer Berlin Heidelberg, 2007.

[17] L. Pizzato, T. Rej, T. Chung, I. Koprinska, and
J. Kay. RECON: a reciprocal recommender for online
dating. In Proceedings of the 4th ACM conference on
Recommender systems, pages 207–214. ACM, 2010.

[18] D. M. W. Powers. Evaluation: from precision, recall
and f-measure to ROC, informedness, markedness and
correlation. International Journal of Machine Learn-
ing Technology, 2(1):37–63, 2011.

[19] L. Rabiner. A tutorial on Hidden Markov models and
selected applications in speech recognition. Proceedings
of IEEE, 77(2):257–286, 1989.

[20] N. Sahoo, P. V. Singh, and T. Mukhopadhyay. A
Hidden Markov model for collaborative filtering. MIS
Q., 36(4):1329–1356, Dec. 2012.

[21] G. Shani and A. Gunawardana. Evaluating recommen-
dation systems. In F. Ricci, L. Rokach, B. Shapira, and
P. B. Kantor, editors, Recommender Systems Hand-
book, pages 257–297. Springer US, 2011.

[22] J. Sun, D. Parthasarathy, and K. Varshney. Collabora-
tive kalman filtering for dynamic matrix factorization.
IEEE Transactions on Signal Processing, 62(14):3499–
3509, July 2014.

[23] W. Wobcke, A. Krzywicki, Y. S. Kim, X. Cai, M. Bain,
P. Compton, and A. Mahidadia. A deployed people-
to-people recommender system in online dating. AI
MAGAZINE, 36(3):5–18, January 2015.

[24] P. Xia, B. Liu, Y. Sun, and C. Chen. Reciprocal rec-
ommendation system for online dating. In Proceedings
of 2015 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining, Paris,
France, 2015.

[25] S. Young, G. Evermann, M. Gales, T. Hain, D. Ker-
shaw, X. A. Liu, G. Moore, J. Odell, D. Ollason,
D. Povey, V. Valtchev, and P. Woodland. The HTK
Book. Cambridge University Engineering Department,
March 2009.

[26] C. Zhang, K. Wang, H. Yu, J. Sun, and E.-P. Lim.
Latent factor transition for dynamic collaborative fil-
tering. In Proceedings of the SIAM International Con-
ference on Data Mining, pages 452–460. Citeseer, 2014.


