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Personalized search in e-commerce
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Recommendation to sellers €2 meEe
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From Taobao's seller interface.
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Relation and ranking MERRE

In the above tasks, we consider the relationship between
@ buyer and item
@ buyer/query and item
o seller and item
o seller and buyer
° ...

and rank items (or buyers) conditioned on a buyer (or a seller, a
query-buyer pair).
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Relation as function £ M ibaba

@ Buyer and item: u buyer, v item,
» scoring function: y(v;u)
@ Ranking by scores:
> y(vi;u) > y(vj;u) = u prefers v; over vj.
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Ranking by segmentation

o Assume that given K underlying user segment, users, u,
belonging to segment k share a same scoring function:

y(v;u) = gr(v)

o User u bought item w. Let all users that bought item w be
segment k. gi(v) be the preference scores (purchase history) of
item v in segument k. It is item-based collaborative filtering.
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Ranking using mixture ~ MERRED

o User u bought more than one item. The above strict
segmentation assumption is relaxed. It is usually considered to
use similarity between users.
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. . . Alibab‘a Group
Ranking using mixture PR

o User u bought more than one item. The above strict
segmentation assumption is relaxed. It is usually considered to
use similarity between users.

@ In a general term, scoring function of u is a linear combination
of gy:

y(v;u) = Z Brgr(v),

where segmentation is latent.
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Ranking as matrix factorization E25 R

o For each user u,

y(viu) = Z Brgr(v)
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Ranking as matrix factorization EL2555

o For each user wu,

y(viu) = Brgr(v)
k
@ As each user has its own 5y = fr(u)

y(vsu) =) fu(u)ge(v)
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Ranking as matrix factorization e

o For each user u,

y(v;u) = Brgr(v)

@ As each user has its own 5y = fr(u)
y(viu) = fu(w)gi(v)
k

o Put y(u,v), fr(u) and gx(v) as matrices @

Y=GF' ~T
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Alibaba Group

Ranking as matrix factorization R

o For each user u,

y(v;u) = Brgr(v)

@ As each user has its own 5y = fr(u)
y(v;u) = felu)ge(v) 9
k
o Put y(u,v), fr(u) and gx(v) as matrices @
Y=GF' ~T

@ Convex: use low rank constraint of Y,
[YLZGO09].
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Ranking in bilinear model E2 mwie

o User feature x,, and item feature z,.
fr(u) = (ag, z) 9i(v) = (br, 20)
y(’U; U) = Z fk(u)gk(v) = <mu; WZ’U>
k

where W =", ab] .

Shenghuo Zhu (Alibaba) Relational learning using bilinear models and May 2, 2015 10 / 21



Alibaba Group

Ranking in bilinear model PR

o User feature x,, and item feature z,.
Je(u) = (a, ) , gk (v) = (bx, )
y(viu) = frl)ge(v) = (@u, Wz,)
k

where W =", axb/ .
o Put y(v;u), fr(u) and gx(v) as matrices

Y=X"WZz
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|ssues - PEERER

@ How to control the complexity of learning space?
» Rank of W, or nuclear norm ||W]..
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@ How to control the complexity of learning space?
» Rank of W, or nuclear norm ||[W||..

@ When features have high dimensions, can we take the advantage
of low complexity of W to reduce the computational
complexity?

» The model is essentially a linear model:

=vec(Y) = (Z® X) Tvec(W) = 2" w.

» A projection apporach of linear model is presented in this talk.

Shenghuo Zhu (Alibaba) May 2, 2015 1 /21



Alibaba Group
Solve via random projection EL mmze

o To solve:

A
w = argmin 3 ul* + 3 a]w, ).
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Solve via random projection RRERSED

o To solve:
w = alrgminéHwH2 + ZE(mTw Yi)-
w 2 , t

@ Approach
» Generate a random projection R of rank m, and let ¥; = Rz;.
» Solve: 5
: =T
v =argmin J[lo]* + 3 £(7] 0, ).
7

» Recover: i = R'v.
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@ 1 is limited in the subspace spanned by R, as 1 = R'v.

Theorem 3 of [ZMJ*13]

For any 0 < & < 1/2, with a probability
1 —exp(—(d —1)/32) — exp(—m/32) — 6, we have

R 1 /d—r eyv/2(1+¢)
- gy e I I ek Sl 72 ,
o= wells > 51/ = (1 S )Hw*Hz
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Dual Space - PEPRED

@ Dual variable and function
5*(047 yz) = sgp {aif - E(ga yz)}
@ Dual problem

S B e
o = argmin oo X Xoc—i—zi:é*(ai,yi).

(67

@ Dual problem after random projection

A SN B (o e
a:arg;nlnaa X R Ron—l—Zi:E*(ai,yi).
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Proposition
For any 0 < & < 1/2, with a probability at least 1 — &, we have

~ €
& = ol < T lleullx,

provided m = Q(s %logd ).
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Random Projection Dual Recovery ([ﬁéPFE"-’%

o Generate a random projection R of rank m, and let Z; = Rx;.

@ Solve: \
argjnin EHUHQ + Zﬁ(i;v, Yi)-
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Al
Random Projection Dual Recovery (I:E’F%PTEE"-’E“

o Generate a random projection R of rank m, and let Z; = Rx;.

o Solve: \
arg min - [[v]|* + Zf(f?v, vi)-

o Obtain dual variables: &; = ¢/(z; v, y;)

. . . ~ 1 ~
@ Recover primal solution: 10 = —5 3, &;;.
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Approximation error of DuRP €2 e

Theorem 2 of [ZMJ*13]
For any 0 < ¢ < 1/2, with a probability at least 1 — §, we have

- €
10 = willz < T—llws]]z,

> (r+1)log(2r/6)

provided m =
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Dual variables in bilinear model " MEEERD

@ Dual variables in o can be reshaped to a matrix A, where the
nonzero entries correpsond to the user-item pairs having
interaction.

@ Then the recovered matrix is written as

W=XAZ".
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DuRP for high dimensional bi-linear

@ Very high dimension in its linear representation, i.e. 7 ® X
» Random projection: R = Ry ® R;.[QJZL13].
@ Recovered matrix W = X AZ" is of high dimension and usually
dense, thus is difficult to apply to online service.

» Approximated by multiplication of two low rank matrices, using
approximate SVD [HMT11].
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Summary - e

@ Many applications using relational data
o A bilinear model is a straightforward approach

o To learn from massive data, dual recovery random projection.
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