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Recommendation in e-commerce

From http://ju.taobao.com/
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Personalized search in e-commerce

From http://tw.taobao.com/
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Recommendation to sellers

From Taobao’s seller interface.
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Relation and ranking

In the above tasks, we consider the relationship between

buyer and item

buyer/query and item

seller and item

seller and buyer

...

and rank items (or buyers) conditioned on a buyer (or a seller, a
query-buyer pair).

Shenghuo Zhu (Alibaba) Relational learning using bilinear models and its application in E-commerceMay 2, 2015 5 / 21



Relation as function

Buyer and item: u buyer, v item,
I scoring function: y(v;u)

Ranking by scores:
I y(vi;u) > y(vj ;u) =⇒ u prefers vi over vj .
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Ranking by segmentation

Assume that given K underlying user segment, users, u,
belonging to segment k share a same scoring function:

y(v;u) = gk(v)

User u bought item w. Let all users that bought item w be
segment k. gk(v) be the preference scores (purchase history) of
item v in segument k. It is item-based collaborative filtering.
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Ranking using mixture

User u bought more than one item. The above strict
segmentation assumption is relaxed. It is usually considered to
use similarity between users.

In a general term, scoring function of u is a linear combination
of gk:

y(v;u) =
K∑
k=1

βkgk(v),

where segmentation is latent.
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Ranking as matrix factorization
For each user u,

y(v;u) =
∑
k

βkgk(v)

As each user has its own βk = fk(u)

y(v;u) =
∑
k

fk(u)gk(v)

Put y(u, v), fk(u) and gk(v) as matrices

Y = GF> ≈ T

Convex: use low rank constraint of Y ,
[YLZG09].
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Ranking in bilinear model

User feature xu, and item feature zv.

fk(u) = 〈ak, xu〉 , gk(v) = 〈bk, zv〉

y(v;u) =
∑
k

fk(u)gk(v) = 〈xu,Wzv〉

where W =
∑

k akb
>
k .

Put y(v;u), fk(u) and gk(v) as matrices

Y = X>WZ
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Issues

How to control the complexity of learning space?
I Rank of W , or nuclear norm ‖W‖∗.

When features have high dimensions, can we take the advantage
of low complexity of W to reduce the computational
complexity?

I The model is essentially a linear model:

y ≡ vec(Y) = (Z ⊗X)>vec(W ) ≡ x>w.

I A projection apporach of linear model is presented in this talk.
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Solve via random projection

To solve:

w = arg min
w

λ

2
‖w‖2 +

∑
i

`(x>i w, yi).

Approach
I Generate a random projection R of rank m, and let x̃i = Rxi.
I Solve:

v = argmin
v

λ

2
‖v‖2 +

∑
i

`(x̃>i v, yi).

I Recover: ŵ = R>v.
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Issue

ŵ is limited in the subspace spanned by R, as ŵ = R>v.

Theorem 3 of [ZMJ+13]

For any 0 < ε ≤ 1/2, with a probability
1− exp(−(d− r)/32)− exp(−m/32)− δ, we have

‖ŵ − w∗‖2 ≥
1

2

√
d− r
m

(
1−

ε
√

2(1 + ε)

1− ε

)
‖w∗‖2.
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Dual space

Dual variable and function

`∗(α, yi) = sup
ξ
{αiξ − `(ξ, yi)}

Dual problem

α = arg min
α

1

2λ
α>X>Xα +

∑
i

`∗(αi, yi).

Dual problem after random projection

α̂ = arg min
α

1

2λ
α>X>R>RXα +

∑
i

`∗(αi, yi).
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Proposition

For any 0 < ε ≤ 1/2, with a probability at least 1− δ, we have

‖α̃− α∗‖K ≤
ε

1− ε
‖α∗‖K ,

provided m = Ω(ε−2 log δ−1).
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Random Projection Dual Recovery (DuRP)

Generate a random projection R of rank m, and let x̃i = Rxi.

Solve:

arg min
v

λ

2
‖v‖2 +

∑
i

`(x̃>i v, yi).

Obtain dual variables: α̃i = `′(x̃>i v, yi)

Recover primal solution: w̃ = − 1
λ

∑
i α̃ixi.
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Approximation error of DuRP

Theorem 2 of [ZMJ+13]

For any 0 < ε ≤ 1/2, with a probability at least 1− δ, we have

‖w̃ − w∗‖2 ≤
ε

1− ε
‖w∗‖2,

provided m ≥ (r+1) log(2r/δ)
cε2

.
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Dual variables in bilinear model

Dual variables in α can be reshaped to a matrix A, where the
nonzero entries correpsond to the user-item pairs having
interaction.

Then the recovered matrix is written as

W = XAZ>.
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DuRP for high dimensional bi-linear model

Very high dimension in its linear representation, i.e. Z ⊗X
I Random projection: R = R2 ⊗R1.[QJZL13].

Recovered matrix W = XAZ> is of high dimension and usually
dense, thus is difficult to apply to online service.

I Approximated by multiplication of two low rank matrices, using
approximate SVD [HMT11].
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Summary

Many applications using relational data

A bilinear model is a straightforward approach

To learn from massive data, dual recovery random projection.
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