LOW RANK MATRIX COMPLETION: CONVEX, NON-CONVEX AND GREEDY APPROACHES

Jieping Ye University of Michigan

Joint work with Zheng Wang, Ming-Jun Lai, Zhaosong Lu, Wei Fan, and Hasan Davulcu

First International Workshop on Machine Learning Methods for Recommender Systems, Vancouver, British Columbia, Canada, May 2nd, 2015.

Background

Trace Norm Formulation

Matrix factorization

Orthogonal Rank-One Matrix Pursuit

Evaluation

Summary

Matrix Completion

Collaborative Filtering

		Ś	Ś	Ś	Ś	Ś		Ś	Ś	Ś
	°.	Ś		Ś		Ś	Ś	Ś	Ś	Ś
	°.	Ś	Ś	Ś	Ś	Ś	Ś	Ś		S
ners	°.	Ś	Ś		Ś	Ś	Ś	Ś	Ś	°.
		Ś	Ś	Ś	Ś		Ś	Ś	Ś	
	°.		Ś	Ś	Ś	Ś	Ś	Ś		°.
	°.	Ś	Ś	Ś	Ś		Ś	Ś	Ś	°.
	Ś	Ś	Ś		Ś	Ś	Ś	Ś		Ś

Items

Customer

- Customers are asked to rank items
- □ Not all customers ranked all items
- □ Predict the missing rankings (98.9% is missing)

The Netflix Problem

S Users S S Ś S 2 S 2 S S S S S S S S S S Ś S Ś 2 S 2 S Ś

Movies

About a million users and 25,000 movies
 Known ratings are sparsely distributed

Preferences of users are determined by a small number of factors \rightarrow low rank

Matrix Rank

6

The number of independent rows or columns
 The singular value decomposition (SVD):

Low Rank Matrix Completion

Low rank matrix completion with incomplete observations can be formulated as:

> $\min_{\mathbf{X}} \quad rank(\mathbf{X})$ s.t. $P_{\Omega}(\mathbf{X}) = P_{\Omega}(\mathbf{Y})$

with the projection operator defined as:

$$P_{\Omega}(\mathbf{X}) = \begin{cases} x_{ij} & (i,j) \in \Omega \\ 0 & (i,j) \notin \Omega \end{cases}$$

Other Low-Rank Problems

- Multi-Task/Class Learning
- □ Image compression
- □ System identification in control theory
- □ Structure-from-motion problem in computer vision
- □ Low rank metric learning in machine learning
- □ Other settings:
 - Iow-degree statistical model for a random process
 - a low-order realization of a linear system
 - a low-order controller for a plant
 - a low-dimensional embedding of data in Euclidean space

Two Formulations for Rank Minimization

min $loss(X) + \lambda * rank(X)$

Rank minimization is NP-hard

$$\log(X) = \frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(Y)\|_{F}^{2}$$

Trace Norm (Nuclear Norm)

10

Trace norm of a matrix is the sum of its singular values:

$$X = U \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{pmatrix} V^T$$
$$X \parallel_* = \sum_{i=1}^k \sigma_i$$

 □ trace norm ⇔ 1-norm of the vector of singular values
 □ trace norm is the convex envelope of the rank function over the unit ball of spectral norm ⇒ a convex relaxation

Two Convex Formulations

min
$$loss(X) + \lambda \times ||X||_*$$

$$\begin{array}{ll} \min & ||X||_* \\ \text{subject to} & \log(X) \leq \varepsilon \end{array}$$

Trace norm minimization is convex

- Can be solved by semi-definite programming
 - Computationally expensive
- Recent more efficient solvers:
 - Singular value thresholding (Cai et al, 2008)
 - Fixed point method (Ma et al, 2009)
 - Accelerated gradient descent (Toh & Yun, 2009, Ji & Ye, 2009)

Trace Norm Minimization

Trace norm convex relaxation

It can be solved by the sub-gradient method, the proximal gradient method or the conditional gradient method.

Convergence speed: sub-linear

Iteration: truncated SVD or top-SVD (Frank-Wolfe)

<sup>Ref: 1. Candes, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717–772, 2009.
2. Jaggi, M. and Sulovsky, M. A simple algorithm for nuclear norm regularized problems. In ICML, 2010.</sup>

Gradient Descent for the Composite Model

(Nesterov, 2007; Beck and Teboulle, 2009)

Proximal Operator Associated with Trace Norm

14

Optimization problem

$$\min_{X} f(X) = \log(X) + \lambda \|X\|_{*}$$

Associated proximal operator $X^* = \pi_{tr}(V) = \arg \min_X \frac{1}{2} ||X - V||_2^2 + \lambda \times ||X||_*$

Closed form solution: $X^* = P \operatorname{diag}(\tilde{\sigma}) Q^{\mathrm{T}}$, where $V = P \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_k) Q^{\mathrm{T}}$ is the SVD of $V \in \mathbb{R}^{m \times n}$, $k = \min(m, n), P \in \mathbb{R}^{m \times k}, Q \in \mathbb{R}^{n \times k}$, and $\tilde{\sigma}_i = \begin{cases} v_i - \lambda & \sigma_i > \lambda \\ 0 & \sigma_i \leq \lambda \end{cases}$

A Non-convex Formulation via Matrix Factorization

- 15
- Rank-*r* matrix X can be written as a product of two smaller matrices U and V

 $\mathbf{X} = \mathbf{U}\mathbf{V}^T$

Alternating Optimization

16

$$\min_{\mathbf{U},\mathbf{V}} \quad \left\| P_{\Omega}(\mathbf{U}\mathbf{V}^{T}) - P_{\Omega}(\mathbf{Y}) \right\|_{F}^{2} + \frac{1}{2} \left(\left\| \mathbf{U} \right\|_{F}^{2} + \left\| \mathbf{V} \right\|_{F}^{2} \right)$$

Non-convex

- Can be solved via
 - Alternating minimization (Jain et al, 2012)
 - Augmented Lagrangian (Wen et al, 2007)

Summary of Two Approaches

Bilinear non-convex relaxation

17

 $X = UV^T$

$$\min_{\mathbf{U},\mathbf{V}} \quad \left\| P_{\Omega}(\mathbf{U}\,\mathbf{V}^{T}) - P_{\Omega}(\mathbf{Y}) \right\|_{F}^{2}$$

Rank-One Matrix Space

Rank-one matrices with unit norm as Atoms

$$\mathbf{M} \in \mathfrak{R}^{n \times m}$$
 for $\mathbf{M} = uv^T$ $u \in \mathfrak{R}^n$ $v \in \mathfrak{R}^m$

Matrix Completion in Rank-One Matrix Space

19

Matrix completion in rank-one matrix space

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{I}, \{M_{i}\}} \qquad \left\|\boldsymbol{\theta}\right\|_{0}$$

s.t.
$$P_{\Omega}(\mathbf{X}(\boldsymbol{\theta})) = P_{\Omega}(\mathbf{Y})$$

with the estimated matrix in the rank-one matrix space as

 $\mathbf{X}(\boldsymbol{\theta}) = \sum_{i \in I} \boldsymbol{\theta}_i \, \mathbf{M}_i$

• Reformulation in the noisy case

$$\min_{\mathbf{X}(\boldsymbol{\theta})} \quad \left\| P_{\Omega}(\mathbf{X}(\boldsymbol{\theta})) - P_{\Omega}(\mathbf{Y}) \right\|_{F}^{2}$$

s.t.
$$\left\| \boldsymbol{\theta} \right\|_{0} \leq r$$

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The candidate set is an infinite set composed by all rank-one matrices

$$\mathbf{M} \in \mathfrak{R}^{n \times n}$$

Orthogonal Matching Pursuit

20

Greedy algorithm to iteratively solve an optimization problem with a solution spanned by the bases in a given (over-complete) dictionary
 D = {d⁽¹⁾, d⁽²⁾,...,d^(T)}

$$\min_{\hat{x}} \qquad \|x - \hat{x}\|^2$$

s.t.
$$\hat{x} = \sum_{i=1}^r \theta_i d_i$$

Iteration k:
Step 1: basis selection $d_i = \underset{d \in D}{\operatorname{argmax}} |\langle r, d \rangle|$ $r = x - \sum_{i=1}^{k-1} \theta_i d_i$ Step 2: orthogonal
projection $\theta = \underset{\theta}{\operatorname{argmax}} \left\| x - \sum_{i=1}^{k} \theta_i d_i \right\|$ $\hat{x} = \sum_{i=1}^{k} \theta_i d_i$

Compressive Sensing

When data is sparse/compressible, can directly acquire a *condensed* $y = \Phi x$

Convex Formulation

□ Signal recovery via ℓ₁ optimization [Candes, Romberg, Tao; Donoho]

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$

Greedy Algorithms

23

Signal recovery via iterative greedy algorithms

- orthogonal) matching pursuit [Gilbert, Tropp]
- iterated thresholding [Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, Defrise, De Mol; Blumensath, Davies; ...]
- CoSaMP [Needell and Tropp]

Greedy Recovery Algorithm (1)

24

Consider the following problem

□ Can we recover the **support?**

Greedy Recovery Algorithm (2)

If
$$\Phi = [\phi_1, \phi_2, \dots, \phi_N]$$

then $\arg \max |\langle \phi_i, y \rangle|$ gives the support of x

□ How to extend to *K*-sparse signals?

25

Greedy Recovery Algorithm (3)

residue:

find atom:

Add atom to support:

Signal estimate

$$r = y - \Phi \hat{x}_{k-1}$$

$$k = \arg \max |\langle \phi_i, r \rangle|$$

$$S = S \bigcup \{k\}$$

$$x_k = (\Phi_S)^{\dagger} y$$

Baraniuk et al., 2012

26

Orthogonal Matching Pursuit

goal: given $y = \Phi x$, recover a sparse xcolumns of Φ are unit-norm

initialize: $\hat{x}_0 = 0, r = y, \Lambda = \{\}, i = 0$

iteration:

 $\circ i = i + 1$

 $\circ b = \Phi^T r$ $\circ k = \arg \max\{|b(1)|, |b(2)|, \dots, |b(N)|\}$ Find atom with largest support

$$\circ \Lambda = \Lambda \bigcup k \circ (\widehat{x}_i)_{|\Lambda} = (\Phi_{|\Lambda})^{\dagger} y, \ (\widehat{x}_i)_{|\Lambda^c} = 0$$

 $\circ r = y - \Phi \hat{x}_i$

Update signal estimate

Update residual

Orthogonal Rank-One Matrix Pursuit for Matrix Completion

Matrix completion in rank-one matrix space

28

$$\min_{\mathbf{X}(\boldsymbol{\theta})} \|P_{\Omega}(\mathbf{X}(\boldsymbol{\theta})) - P_{\Omega}(\mathbf{Y})\|_{F}^{2}$$

$$s.t. \|\boldsymbol{\theta}\|_{0} \leq r$$

$$\mathbf{X}(\boldsymbol{\theta}) = \sum_{i \in I} \theta_{i} \mathbf{M}_{i}$$

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The candidate set is an infinite set composed by all rank-one matrices.

Top-SVD: Rank-One Matrix Basis

29

Step 1: basis construction

with residual matrix

$$[u_*, v_*] = \underset{\|u\|=1, \|v\|=1}{\operatorname{argmax}} \left\langle \mathbf{R}, uv^T \right\rangle = u^T \mathbf{R} v \qquad \mathbf{R} = \mathbf{Y}_{\Omega} - \mathbf{X}_{\Omega}$$

 $\mathbf{M} = \boldsymbol{\mu}_* \boldsymbol{\nu}_*^T$ is selected from all rank-one matrices with unit norm.

All rank-one matrices

Infinite size

Rank-One Matrix Pursuit Algorithm

30

Step 1: construct the optimal rank-one matrix basis

$$[u_*, v_*] = \underset{u,v}{\operatorname{argmax}} \left\langle (\mathbf{Y} - \mathbf{X}_k)_{\Omega}, uv^T \right\rangle \qquad \mathbf{M}_{k+1} = u_* v_*^T$$

This is the top singular vector pair, which can be solved efficiently by power method.

This generalizes OMP with *infinite* dictionary set of all rank-one matrices $M \in \Re^{n \times m}$

Step 2: calculate the optimal weights for current bases
$$\theta^{k} = \arg \min_{\theta \in \Re^{k}} \left\| \sum_{i} \theta_{i} M_{i} - Y \right\|_{\Omega}^{2}$$

This is a least squares problem, which can be solved incrementally.

Linear Convergence

31

□ Linear upper bound for the algorithm to converge

Theorem 3.1. The rank-one matrix pursuit algorithm satisfies $||\mathbf{R}_k|| \leq \gamma^{k-1} ||\mathbf{Y}||_{\Omega}, \quad \forall k \geq 1.$ γ is a constant in [0, 1).

This is significantly different from the standard MP/OMP algorithm with a finite dictionary, which are known to have a sub-linear convergence speed at the worst case.

At each iteration, we guarantee a significant reduction of the residual, which depends on the top singular vector pair pursuit step.

Z. Wang et al. ICML'14; SIAM J. Scientific Computing 2015

Efficiency and Scalability

An efficient and scalable algorithm for matrix completion: Rank-One Matrix Pursuit

Scalability: top-SVD

Convergence: linear convergence

Z. Wang et al. ICML'14; SIAM J. Scientific Computing 2015

Related Work

33

Atomic decomposition

$$\mathbf{X} = \sum_{i \in I} \boldsymbol{\theta}_i \, \mathbf{M}_i$$

It can be solved by matching pursuit type algorithms.

Vs. Frank-Wolfe algorithm (FW)

Similarity: top-SVD

Difference: linear convergence Vs. sub-linear convergence

□ Vs. existing greedy approach (ADMiRA)

Similarity: linear convergence

Difference: 1. top-SVD Vs. truncated SVD 2. no extra condition for linear convergence

Time and Storage Complexity

34

□ Time complexity

	R1MP	ADMiRA & AltMin	JS(FW)	Proximal	SVT
Each Iter.	$O(\Omega)$	$O(\mathbf{r} \Omega)$	$O(\Omega)$	$O(\mathbf{r} \mathbf{\Omega})$	$O(\mathbf{r} \boldsymbol{\Omega})$
Iterations	$O(\log(1/\epsilon))$	$O(\log(1/\epsilon))$	$O(1/\epsilon)$	$O(1/\sqrt{\epsilon})$	$O(1/\epsilon)$
Total	$O(\Omega \log(1/\epsilon))$	$O(\mathbf{r} \Omega \log(1/\epsilon))$	$O(\Omega /\epsilon)$	$O(\mathbf{r} \mathbf{\Omega} /\sqrt{\epsilon})$	$O(\mathbf{r} \Omega /\epsilon)$

minimum iteration cost

+ linear convergence

Storage complexity

 $O(k \mid \Omega \mid)$ — It is large when k keeps increasing. $O(\mid \Omega \mid)$ is more suitable for large-scale problems.

Economic Rank-One Matrix Pursuit

35

Step 1: find the optimal rank-one matrix basis

$$[u_*, v_*] = \underset{u,v}{\operatorname{argmax}} \left\langle (\mathbf{Y} - \mathbf{X}_k)_{\Omega}, uv^T \right\rangle \qquad \mathbf{M}_{k+1} = u_* v_*^T$$

Step 2: calculate the weights for two matrices

$$\boldsymbol{\alpha} = \underset{\boldsymbol{\alpha} \in \Re^2}{\operatorname{arg\,min}} \|\boldsymbol{\alpha}_1 \mathbf{X}_k + \boldsymbol{\alpha}_2 \mathbf{M}_{k+1} - \mathbf{Y}\|_{\Omega}^2$$
$$\boldsymbol{\theta}_i^{k-1} = \boldsymbol{\theta}_i^{k-1} \boldsymbol{\alpha}_1 \quad \boldsymbol{\theta}_i^k = \boldsymbol{\alpha}_2$$

It retains the linear convergence

Theorem 4.1. The economic rank-one matrix pursuit algorithm satisfies

$$||\mathbf{R}_k|| \leq \tilde{\gamma}^{k-1} ||\mathbf{Y}||_{\Omega}, \quad \forall k \geq 1.$$

 $\tilde{\gamma}$ is a constant in [0,1).

Experiments

Experiments

- Collaborative filtering
- Image recovery
- Convergence property

Competing algorithms

- singular value projection (SVP)
- spectral regularization algorithm (SoftImpute)
- Iow rank matrix fitting (LMaFit)
- alternating minimization (AltMin)
- boosting type accelerated matrix-norm penalized solver (Boost)
- Jaggi's fast algorithm for trace norm constraint (JS)
- greedy efficient component optimization (GECO)
- Rank-one matrix pursuit (R1MP)
- Economic rank-one matrix pursuit (ER1MP)

trace norm minimization

alternating optimization

atomic decomposition

Convergence

37

Residual curves of the Lena image for R1MP and ER1MP in log-scale

Collaborative Filtering

38

Dataset	SVP	SoftImpute	LMaFit	AltMin	Boost	JS	GECO	R1MP	ER1MP
Jester1	18.35	161.49	3.68	11.14	93.91	29.68	$> 10^4$	1.83	0.99
Jester2	16.85	152.96	2.42	10.47	261.70	28.52	$> 10^4$	1.68	0.91
Jester3	16.58	10.55	8.45	12.23	245.79	12.94	$> 10^{3}$	0.93	0.34
MovieLens100K	1.32	128.07	2.76	3.23	2.87	2.86	10.83	0.04	0.04
MovieLens1M	18.90	59.56	30.55	68.77	93.91	13.10	$> 10^4$	0.87	0.54
MovieLens10M	$> 10^{3}$	$> 10^{3}$	154.38	310.82	_	130.13	$> 10^{5}$	23.05	13.79

Running time for different algorithms

Prediction accuracy in terms of RMSE

Dataset	SVP	SoftImpute	LMaFit	AltMin	Boost	JS	GECO	R1MP	ER1MP
Jester1	4.7311	5.1113	4.7623	4.8572	5.1746	4.4713	4.3680	4.3418	4.3384
Jester2	4.7608	5.1646	4.7500	4.8616	5.2319	4.5102	4.3967	4.3649	4.3546
Jester3	8.6958	5.4348	9.4275	9.7482	5.3982	4.6866	5.1790	4.9783	5.0145
MovieLens100K	0.9683	1.0354	1.2308	1.0042	1.1244	1.0146	1.0243	1.0168	1.0261
MovieLens1M	0.9085	0.8989	0.9232	0.9382	1.0850	1.0439	0.9290	0.9595	0.9462
MovieLens10M	0.8611	0.8534	0.8625	0.9007	_	0.8728	0.8668	0.8621	0.8692

Summary

- Matrix completion background
- Trace norm convex formulation
- Matrix factorization: non-convex formulation
- Orthogonal rank-one matrix pursuit
 - Efficient update: top SVD
 - Fact convergence: linear rate
- Extensions
 - Tensor completion
 - Screening for matrices