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Matrix Completion

Microarray data
imputation
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Collaborative Filtering

Customers
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o Customers are asked to rank items
- Not all customers ranked all items
- Predict the missing rankings (98.9% 1s missing)



The Netflix Problem

Movies
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- About a million users and 25,000 movies
- Known ratings are sparsely distributed

Preferences of users are determined by a small number of factors = low rank




Matrix Rank

6
o T

ne number of independent rows or columns

o T

ne singular value decomposition (SVD):

rank

l&].




Low Rank Matrix Completion

- Low rank matrix completion with incomplete observations can be
formulated as:

mXin rank (X)

st. Py(X)=F,(Y)

x., (i,j)eQ
with the projection operator defined as: P,(X) =+

0 @))eQ



Other Low-Rank Problems

Multi-Task/Class Learning

Image compression

System 1dentification in control theory
Structure-from-motion problem in computer vision
Low rank metric learning in machine learning

Other settings:
low-degree statistical model for a random process
a low-order realization of a linear system
a low-order controller for a plant
a low-dimensional embedding of data in Euclidean space




Two Formulations for Rank Minimization

min rank(X)

min loss(X) + A*rank(X) subject to  loss(X)< ¢

Rank minimization i1s NP-hard

loss(X) = %HPQ (X)-F, (Y)H;



Trace Norm (Nuclear Norm)

Trace norm of a matrix is the sum of its singular values:

x = u|l . T . |vT

trace norm < 1-norm of the vector of singular values

trace norm is the convex envelope of the rank function over
the unit ball of spectral norm = a convex relaxation




Two Convex Formulations

min loss(X) + Ax||X]|. min 111,
subject to loss(X)< ¢

Trace norm minimization 1s convex

* Can be solved by semi-definite programming

* Computationally expensive

e Recent more efficient solvers:

* Singular value thresholding (Cai et al, 2008 )
* Fixed point method (Ma et al, 2009)
* Accelerated gradient descent (Toh & Yun, 2009, J1 & Ye, 2009)



Trace Norm Minimization

Trace norm convex relaxation

noisy case

1
) min 5||1f>Q(X)—PQ(Y)Hj+2L||X

min ||X
X

*k

S.t. PQ(X):PQ(Y)

*

It can be solved by the sub-gradient method, the proximal gradient method or
the conditional gradient method.

Convergence speed: sub-linear
Iteration: truncated SVD or top-SVD (Frank-Wolfe)

Ref: 1. Candes, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717-772, 2009.
2. Jaggi, M. and Sulovsky, M. A simple algorithm for nuclear norm regularized problems. In ICML, 2010.



Gradient Descent for the Composite Model

(Nesterov, 2007; Beck and Teboulle, 2009)

min f{(x)= loss(x) + Axpenalty(x)

Model

M(x;,7;) = [loss(x;)+ (loss'(x;), x—x;)]+ !

.

I

[x—x;||54+\ x penalty(x)

P4 lai ‘Z \N
1%t order Taylor expansion Regularization Nonsmooth part
- N
Repeat Convergence rate O( ] / N )

Xip] — arg min M (-xia A/l)

Until “convergence”
\ \

Can the proximal operator be computed efficiently?




Proximal Operator Associated with Trace Norm
T

Optimization problem

minf(X) = loss(X) + A[X]|.

Associated proximal olloerator
X" =my(V) = arg n;(inEIIX — V|5 + A x |IX]|«

Closed form solution: X* = Pdiag(5)Q",
where V = Pdiag(oy,0s,...,04)Q" isthe SVD of V € R"™ ",

—

k = min(m,n), P € Rk O € R"™k_ and

- Vi— A o > A
g; —
0 O’,'S)\




A Non-convex Formulation via Matrix

Factorization

15
* Rank-r matrix X can be written as a product of two smaller

matrices U and V
X =UV'

X

= min —(U[; +VI})

xX=uv’' 2




Alternating Optimization

. 2 1
min B,V - BV, + (UL + VI

Non-convex

 Can be solved via

* Alternating minimization (Jain et al, 2012)

* Augmented Lagrangian (Wen et al, 2007)



Summary of Two Approaches

1 Trace norm convex relaxation

mXin HX N noisy case
. 2
. P0O-p,(y) WP min [F,00- Py, +AX].
x;, (G,))EQ
Projection operator:  FP,(X) =+
0 (@G,/)&Q
* Bilinear non-convex relaxation
X=UV'

min  [RUV) - R0, ﬁ I’"—
n = N

r



Rank-One Matrix Space
o

<

Rank-one matrices with unit norm as Atoms

MeR"™  for M=uv' ueR" veR”



Matrix Completion in Rank-One Matrix Space

Matrix completion in rank-one matrix space

pomin 6]
s.t. F,(X(0)) = K, (Y)
with the estimated matrix in the rank-one matrix space as X(0) = zei M,

iel
* Reformulation in the noisy case

min [P, (X(6))- P, (Y)||i

X(0)
st |ell, <

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The
candidate set is an infinite set composed by all rank-one matrices

M e R



Orthogonal Matching Pursuit

Greedy algorithm to iteratively solve an optimization problem with a
solution spanned by the bases in a given (over-complete) dictionary

D={d",d?,....d™

NI
- | - ]
min
X r
S.r. X = Zeidi
i=1
lteration k: k1
Step 1: basis selection di = argmax‘(r,d)‘ F=x- zgidi
deD i=1
Step 2: orth I S )
tep 2: orthogona 0 = arcmaxlx—= N 6.d. s _ 2
projection gg 21 C . ; Hidi
1= =




Compressive Sensing

7 When data is sparse/compressible, can
directly acquire a condensed

representation y = Px

Y P L
M x 1 — : ]\s/,vpa>r<se1
measurements E signal
M x N K
H nonzero
K < M<< N E entries

Baraniuk et al., 2012



Convex Formulation

Y €T
M x 1 . : N x 1
random T - sparse
measurements ] signal
u K
H nonzero
| entries

- Signal recovery via/;optimization

[Candes, Romberg, Tao; Donoho]

r = arg min ||z
y:CDZE Baraniuk et al., 2012



Greedy Algorithms

Y D X
Mx1 B _ S =0 Nx1
random T .l. . N sparse
measurements B ! signal
M x N L K
H nonzero
u entries

Signhal recovery via iterative greedy algorithms

(orthogonal) matching pursuit [Gilbert, Tropp]

iterated thresholding [Nowak, Figueiredo; Kingsbury, Reeves;
Daubechies, Defrise, De Mol; Blumensath, Davies; ...]

CoSaMP [Needell and Tropp] Baraniuk et al. 2012
araniuk ct al.,



Greedy Recovery Algorithm (1)

11 Consider the following problem

<
©

%

EEEEEEEEEEIEEEE R

1 Can we recover the support?

N x 1

sparse
signal

1 sparse

Baraniuk et al., 2012



Greedy Recovery Algorithm (2)

Y X
a H
n H N x 1
T — sparse
N signal
H 1 sparse

0 If P = [¢1,¢27--°7¢N]

then arg max ‘ <¢,“ y> | gives the support of x

- How to extend to K-sparse signals? Baraniuk et al., 2012



Greedy Recovery Algorithm (3)

residue:
find atom:

Add atom to support:

Signal estimate

€T

]

1 N X 1
— sparse

n signal

H K sparse

r=y— Prp_1
k = argmax | (¢;,7) |
S =S| J{k}

T = ((I)S)er Baraniuk et al., 2012



Orthogonal Matching Pursuit

goal:
given y = ®x, recover a sparse x
columns of & are unit-norm

initialize: o = 0,r =y, A ={},i=0

iteration:

or=1+1

ob=dTr

olk = arg max{|b(1)|, |b(2)],...,|b(/N)|}| Find atom with largest support
oA=AlJk

o|(T)ja = (P1a)"y, (Fi)jae =0 Update signal estimate

or =y — Px; Update residual

Baraniuk et al., 2012



Orthogonal Rank-One Matrix Pursuit for Matrix

Completion
28

1 Matrix completion in rank-one matrix space

. 2 ,
min | Po(X(6))— P, ()| iel
St |6, <r ——
——
B |
X(8) = 29,. M.

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The
candidate set is an infinite set composed by all rank-one matrices.



Top-SVD: Rank-One Matrix Basis

Step 1: basis construction
with residual matrix

[u*,v*]=argmaX<R,uvT>=uTRv R=Y,-X,

=1 =1

M = u*vz is selected from all rank-one matrices with unit norm.

All rank-one matrices

I
\_/l

I ’ I
| |
) — M= T
Top-SVD

Infinite size



Rank-One Matrix Pursuit Algorithm

Step 1: construct the optimal rank-one matrix basis

[, v. ] = argmax<(Y— X, )Q,uvT> M,, = TR

This is the top singular vector pair, which can be solved efficiently by power method.

This generalizes OMP with infinite dictionary set of all rank-one matrices M e R

Step 2: calculate the optimal weights for current bases
2

0" = argmin ZQ.Mi -Y

This is a least squares problem, which can be solved incrementally.



Linear Convergence

Linear upper bound for the algorithm to converge

Theorem 3.1. The rank-one matrix pursuit algorithm
satisfies

[Ryl| < " Yo, VEk=1.

v is a constant in [0,1).

This 1s significantly different from the standard MP/OMP algorithm with a finite dictionary,
which are known to have a sub-linear convergence speed at the worst case.

At each iteration, we guarantee a significant reduction of the residual, which depends
on the top singular vector pair pursuit step.

Z. Wang et al. ICML’'14; SIAM J. Scientific Computing 2015



Efficiency and Scalability

An efficient and scalable algorithm for matrix
completion: Rank-One Matrix Pursuit

Scalability: top-SVD

Convergence: linear convergence

Z. Wang et al. ICML’'14; SIAM J. Scientific Computing 2015



Related Work

Atomic decomposition X = 2@‘ M,
iel

It can be solved by matching pursuit type algorithms.

Vs. Frank-Wolfe algorithm (FW)

Similarity: top-SVD

Difference: linear convergence Vs. sub-linear convergence

Vs. existing greedy approach (ADMiRA)

Similarity: linear convergence

Difference: 1. top-SVD Vs. truncated SVD
2. no extra condition for linear convergence

Ref: Lee, K. and Bresler, Y. Admira: atomic decomposition for minimum rank approximation. IEEE Trans. on Information Theory, 56(9):4402-4416, 2010.



Time and Storage Complexity

Time complexity

R1IMP ADMIiRA & AltMin JS(FW) Proximal
EachIter.  O(IQ2) o) o) OrR)
Iterations ~ O(log(1/e))  O(log(1/e)) O(1/¢) O(1/g)
Total O(|1QJlog(1/g)) O(r|Q|log(1/¢)) O(|Q/e) O(1|Q|/e)

minimum iteration cost
+ linear convergence

Storage complexity

O(k | €2 |) == |t is large when k keeps increasing.

0(| @) |) is more suitable for large-scale problems.

SVT
O(r|€Y)
O(1/¢)
O(r|Q|/€)



Economic Rank-One Matrix Pursuit

o1 Step 1: find the optimal rank-one matrix basis

lu.,v.]= argmax<(Y— X, )Q,MVT> Mk+1 _ M*V*T

u,v

-1 Step 2: calculate the weights for two matrices

. 2
o = arg mmHoc1 X F oM, - YHQ
aeR’
0" =0"a, 6'=q,

l

71 It retains the linear convergence

Theorem 4.1. The economic rank-one matrix pursuit
algorithm satisfies

IRl < 3" Yo, VE=>1.

v is a constant in [0, 1).




Experiments

Experiments

Collaborative filtering
Image recovery

Convergence property

Competing algorithms
singular value projection (SVP) S

spectral regularization algorithm (Softimpute) frace norm minimization

low rank matrix fitting (LMaFit)

alternating minimization (AltMin) alternating optimization

boosting type accelerated matrix-norm penalized solver (Boost)

Jaggi's fast algorithm for trace norm constraint (JS)

greedy efficient component optimization (GECO) . o

Rank-one matrix pursuit (R1MP) atomic decomposition

Economic rank-one matrix pursuit (ER1MP)



Convergence

| Lenna Lenna
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Residual curves of the Lena image for RTMP and ER1MP in log-scale



Collaborative Filtering

Running time for different algorithms

Dataset SVP | Softlmpute | LMaFit | AltMin | Boost JS GECO

Jester] 1835 | 161.49 368 [ 11.14 | 9391 | 29.68 | > 107

Jester2 16.85 152.96 242 | 1047 | 261.70 | 2852 | > 10°

Jester3 16.58 10.55 845 | 1223 [ 24579 | 1294 | > 10°

MovieLens100K | 1.32 128.07 2.76 323 | 287 | 2.86 | 10.83

MovieLensIM | 18.90 59.56 30.55 | 68.77 | 9391 | 13.10 | > 10"

MovieLenslOM | >10° | > 10’ 15438 | 310.82 | - 130.13 | >10°

Prediction accuracy in terms of RMSE

Dataset SVP | Softimpute | LMaFit | AltMin | Boost | JS | GECO J RIMP | ERIMP }
Jester] 47311 | 5.0113 | 47623 | 48572 | 5.1746 | 44713 | 4.3680 | 4.3418 | 4.3384
Jester2 47608 | 5.1646 | 47500 | 4.8616 | 52319 | 4.5102 | 4.3967 | 4.3649 | 4.3546
Jester3 8.6958 | 54348 | 9.4275 | 9.7482 | 5.3982 | 4.6866 | 5.1790 | 4.9783 | 5.0145
MovieLensI00K | 0.9683 | 1.0354 | 1.2308 | 1.0042 | 1.1244 | 1.0146 | 1.0243 | 1.0168 | 1.0261
MovieLensIM | 0.9085 | 0.8989 | 0.9232 | 0.9382 | 1.0850 | 1.0439 | 0.9290 | 0.9595 | 0.9462
MovieLensIOM | 0.8611 | 0.8534 | 0.8625 | 0.9007 — | 0.8728 ] 0.8668 \.0.8621 | 0.8692 J




Summary

Matrix completion background
Trace norm convex formulation
Matrix factorization: non-convex formulation

Orthogonal rank-one matrix pursuit
Efficient update: top SVD
Fact convergence: linear rate
Extensions
Tensor completion

Screening for matrices



