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Collaborative Filtering 

¨  Customers are asked to rank items 
¨  Not all customers ranked all items 
¨  Predict the missing rankings (98.9% is missing) 

Customers 
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The Netflix Problem 

¨  About a million users and 25,000 movies 
¨  Known ratings are sparsely distributed 

Users 

Movies 

? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 

Preferences of users are determined by a small number of factors à low rank 
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Matrix Rank 

¨  The number of independent rows or columns 
¨  The singular value decomposition (SVD): 

= × × 

} rank 
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Low Rank Matrix Completion 

with the projection operator defined as:	�

¨  Low rank matrix completion with incomplete observations can be 
formulated as: 	�

(Y)(X)
(X)

..
min
X

ΩΩ = PP
rank

ts

PΩ(X) =
xij (i, j)∈Ω

0 (i, j)∉Ω

⎧

⎨
⎪

⎩
⎪
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Other Low-Rank Problems 

¨  Multi-Task/Class Learning 
¨  Image compression 
¨  System identification in control theory 
¨  Structure-from-motion problem in computer vision 
¨  Low rank metric learning in machine learning 
¨  Other settings: 

¤  low-degree statistical model for a random process 
¤  a low-order realization of a linear system 
¤  a low-order controller for a plant 
¤  a low-dimensional embedding of data in Euclidean space 
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Two Formulations for Rank Minimization 

min   loss(X) + λ*rank(X) min              rank(X) 
subject to    loss(X)≤ ε 

Rank minimization is NP-hard 
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Trace Norm (Nuclear Norm) 

¨  trace norm ⇔ 1-norm of the vector of singular values 
¨  trace norm is the convex envelope of the rank function over 

the unit ball of spectral norm ⇒ a convex relaxation 
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Two Convex Formulations 

min   loss(X) + λ×||X|| min              ||X|| 
subject to    loss(X)≤ ε 

Trace norm minimization is convex 

* 
* 

•  Can be solved by semi-definite programming 
•  Computationally expensive 

•  Recent more efficient solvers:  
•  Singular value thresholding (Cai et al, 2008 ) 
•  Fixed point method (Ma et al, 2009) 
•  Accelerated gradient descent (Toh & Yun, 2009, Ji & Ye, 2009) 
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Trace Norm Minimization 

¨  Trace norm convex relaxation	�

min
X

s.t.

X *

PΩ(X) = PΩ(Y)
min
X

1
2
PΩ(X)− PΩ(Y) F

2 + λ X *

It can be solved by the sub-gradient method, the proximal gradient method or  
the conditional gradient method.	�

Convergence speed: sub-linear	�

Ref: 1. Candes, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717–772, 2009. 
        2. Jaggi, M. and Sulovsky, M. A simple algorithm for nuclear norm regularized problems. In ICML, 2010.	�

Iteration: truncated SVD or top-SVD (Frank-Wolfe)	�

noisy case	�



Gradient Descent for the Composite Model 
 (Nesterov, 2007; Beck and Teboulle, 2009) 

min  f(x)= loss(x) + λ×penalty(x) 

1st order Taylor expansion Regularization Nonsmooth part 

Repeat 

Until “convergence” 

Convergence rate 

13 

Can the proximal operator be computed efficiently? 



Proximal Operator Associated with Trace Norm 

Associated proximal operator  

Closed form solution:  

Optimization problem 
14 



A Non-convex Formulation via Matrix 
Factorization 

TUVX =

r
nn

m
m

r

•  Rank-r matrix X can be written as a product of two smaller 
matrices U and V 

)VU(
2
1minX 22

UVX* FFT
+=

=
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Alternating Optimization 

Non-convex 

•  Can be solved via 
•  Alternating minimization (Jain et al, 2012) 
•  Augmented Lagrangian (Wen et al, 2007)  

16 
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Summary of Two Approaches 
¨  Trace norm convex relaxation	�

min
X

s.t.

X
*

PΩ(X) = PΩ(Y)
min
X

PΩ(X)− PΩ(Y) F

2 + λ X *

noisy case	�

•  Bilinear non-convex relaxation	�

min
U,V

PΩ(UV
T )− PΩ(Y) F

2

X = UVT

r
nn

m m
r
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PΩ(X) =
xij (i, j)∈Ω

0 (i, j)∉Ω
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Projection operator:  



Rank-One Matrix Space 

X θiMi
i∈I
∑

X = σ iuivi
T

i=1

r

∑

Rank-one matrices with unit norm as Atoms	�

M∈ℜn×m

SVD	�

M = uvT u∈ℜn v∈ℜmfor	�
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Matrix Completion in Rank-One Matrix Space 

min
θ∈ℜI ,{Mi}

s.t.

θ
0

PΩ(X(θ )) = PΩ(Y)

with the estimated matrix in the rank-one matrix space as	�

¨  Matrix completion in rank-one matrix space 

X(θ ) = θiMi
i∈I
∑

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The 
candidate set is an infinite set composed by all rank-one matrices	�

M∈ℜn×m

min
X(θ )

s.t.

PΩ(X(θ ))− PΩ(Y)
2

F

θ 0 ≤ r

•  Reformulation in the noisy case 
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Orthogonal Matching Pursuit 

min
x̂

s.t.

x − x̂ 2

x̂ = θidi
i=1

r

∑

Step 1: basis selection	�

¨  Greedy algorithm to iteratively solve an optimization problem with a 
solution spanned by the bases in a given (over-complete) dictionary 

},,,{ )()2()1( TdddD …=

r = x − θidi
i=1

k−1

∑
Iteration k:	�

di = argmax
d∈D

r,d

Step 2: orthogonal  
projection	�

θ = argmax
θ

x − θidi
i=1

k

∑ x̂ = θidi
i=1

k

∑
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Compressive Sensing 

¨  When data is sparse/compressible, can 
directly acquire a condensed 
representation 

measurements sparse 
signal 

nonzero 
entries 

Baraniuk  et al., 2012 



Convex Formulation 
22 

¨  Signal recovery via   optimization   
[Candes, Romberg, Tao; Donoho] 

random  
measurements 

sparse 
signal 

nonzero 
entries 

Baraniuk  et al., 2012 



Greedy Algorithms 
23 

¨  Signal recovery via iterative greedy algorithms 
¤  (orthogonal) matching pursuit   [Gilbert, Tropp] 
¤  iterated thresholding [Nowak, Figueiredo; Kingsbury, Reeves; 

Daubechies, Defrise, De Mol; Blumensath, Davies; …] 
¤  CoSaMP   [Needell and Tropp] 

random  
measurements 

sparse 
signal 

nonzero 
entries 

Baraniuk  et al., 2012 



Greedy Recovery Algorithm (1) 

¨  Consider the following problem 

¨  Can we recover the support?  

 

sparse 
signal 

1 sparse 

24 
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Greedy Recovery Algorithm (2) 

 

¨  If 
 

   then                                        gives the support of x 
 
¨  How to extend to K-sparse signals?   
 

sparse 
signal 

1 sparse 

� = [�1,�2, . . . ,�N ]
argmax | h�i, yi |

25 
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Greedy Recovery Algorithm (3) 

sparse 
signal 

K sparse 

r = y � �bxk�1
residue: 
find atom: k = argmax | h�i, ri |
Add atom to support: S = S

[
{k}

Signal estimate  
xk = (�S)

†
y

26 
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Orthogonal Matching Pursuit 

Update residual 

Find atom with largest support 

Update signal estimate 

goal:

given y = �x, recover a sparse x

columns of � are unit-norm

initialize: bx0 = 0, r = y,⇤ = {}, i = 0

iteration:

� i = i+ 1

� b = �

T
r

� k = argmax{|b(1)|, |b(2)|, . . . , |b(N)|}

� ⇤ = ⇤

S
k

� (bxi)|⇤ = (�|⇤)
†
y, (bxi)|⇤c

= 0

� r = y � �bxi
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Orthogonal Rank-One Matrix Pursuit for Matrix 
Completion 

¨  Matrix completion in rank-one matrix space 

X(θ ) = θiMi
i∈I
∑

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The 
candidate set is an infinite set composed by all rank-one matrices.	�

min
X(θ )

s.t.

PΩ(X(θ ))− PΩ(Y)
2

F

θ 0 ≤ r

28 
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Top-SVD: Rank-One Matrix Basis 

[u*,v*] = argmax
u =1, v =1

R,uvT = uT Rv

All rank-one matrices	�

Top-SVD	�

Infinite size	�

R	�<	� >	�,	�

R = YΩ- XΩ

with residual matrix	�

is selected from all rank-one matrices with unit norm.	�M = u*v*
T

Step 1: basis construction	�

M = u*v*
T

29 



Rank-One Matrix Pursuit Algorithm 

¨  Step 1: construct the optimal rank-one matrix basis 

[u*,v*] = argmax
u,v

(Y−Xk )Ω,uv
T Mk+1 = u*v*

T

θ k = argmin
θ∈ℜk

θiMi
i
∑ −Y

Ω

2

This is the top singular vector pair, which can be solved efficiently by power method.	�

This is a least squares problem, which can be solved incrementally.	�

This generalizes OMP with infinite dictionary set of all rank-one matrices	� M∈ℜn×m

¨  Step 2: calculate the optimal weights for current bases 
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Linear Convergence 

Rank-One Matrix Pursuit for Matrix Completion

(Jaggi & Sulovský, 2010; Dud́ık et al., 2012). The new
rank-one basis matrix Mk is then readily available by
setting Mk = u⇤v

T
⇤ .

After finding the new rank-one basis matrix Mk, we
update the weights ✓k for all currently available basis
matrices {M

1

, · · · ,Mk} by solving the following least
squares regression problem:

min
✓2<k

||
kX

i=1

✓iMi �Y||2
⌦

. (6)

By reshaping the matrices (Y)
⌦

and (Mi)⌦ into vec-
tors ẏ and ṁi, we can easily see that the optimal so-
lution ✓k of (6) is given by

✓k = (M̄T
kM̄k)

�1M̄T
k ẏ, (7)

where M̄k = [ṁ
1

, · · · , ṁk] is the matrix formed by
all reshaped basis vectors. The row size of matrix M̄k

is the total number of observed entries. It is compu-
tationally expensive to directly calculate the matrix
multiplication. An incremental update rule can be ap-
plied to solve this step e�ciently (Wang et al., 2014).

We run the above two steps iteratively until some de-
sired stopping condition is satisfied. We can terminate
the method based on the rank of the estimated matrix
or the approximation residual. In particular, one can
choose a preferred rank of the approximate solution
matrix. Alternatively, one can stop the method once
the residual kRkk is less than a tolerance parameter ".
The main steps of Rank-One Matrix Pursuit (R1MP)
are given in Algorithm 1.

Remark In our algorithm, we adapt orthogonal
matching pursuit on the observed part of the matrix.
This is similar to the GECO algorithm. However,
GECO constructs the estimated matrix by projecting
the observation matrix onto a much larger subspace,
which is a product of two subspaces spanned by all left
singular vectors and all right singular vectors obtained
up to the current iteration. So it has much higher
computational complexity. Lee et al. (Lee & Bresler,
2010) recently propose the ADMiRA algorithm, which
is also a greedy approach. In each step it first chooses
2r components by top-2r truncated SVD and then
uses another top-r truncated SVD to obtain a rank-
r matrix. Thus, the ADMiRA algorithm is computa-
tionally more expensive than the proposed algorithm.
The main di↵erence between the proposed algorithm
and ADMiRA is somewhat similar to the di↵erence be-
tween the OMP (Pati et al., 1993) for learning sparse
vectors and CoSaMP (Needell & Tropp, 2010). In ad-
dition, the performance guarantees (including recovery
guarantee and convergence property) of ADMiRA rely

on strong assumptions, i.e., the matrix involved in the
loss function satisfies a rank-restricted isometry prop-
erty, which is not satisfied in matrix completion (Lee
& Bresler, 2010). Lee et al. sketch a similar idea as the
standard verion of our algorithm in Remark 2.3 with-
out any further analysis, and their theoretical results
cannot be easily extended to our algorithm. Another
contribution of our work is that we further propose
an economic version of the algorithm and analyze its
convergence property.

Algorithm 1 Rank-One Matrix Pursuit (R1MP)

Input: Y
⌦

and stopping criterion.
Initialize: Set X

0

= 0 and k = 1.
repeat

Step 1: Find a pair of top left and right singular
vectors (uk,vk) of the observed residual matrix
Rk = Y

⌦

�Xk�1

and set Mk = uk(vk)T .
Step 2: Compute the weight ✓k using
the closed form least squares solution ✓k =
(M̄T

kM̄k)�1M̄T
k ẏ.

Step 3: Set Xk =
Pk

i=1

✓ki (Mi)⌦ and k  k+1.
until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

Pk
i=1

✓ki Mi.

3. Convergence Analysis

In this section, we will show that our proposed rank-
one matrix pursuit algorithm achieves a linear conver-
gence rate. This main result is given in the following
theorem.

Theorem 3.1. The rank-one matrix pursuit algorithm

satisfies

||Rk||  �k�1kYk
⌦

, 8k � 1.

� is a constant in [0, 1).

Before proving Theorem 3.1, we need to establish some
useful and preparatory properties of Algorithm 1. The
first property says that Rk+1

is perpendicular to all
previously generated Mi for i = 1, · · · , k.
Property 3.2. hRk+1

,Mii = 0 for i = 1, · · · , k.

Proof. Recall that ✓k is the optimal solution of prob-
lem (6). By the first-order optimality condition, one

has hY �
Pk

j=1

✓kjMj ,Mii⌦ = 0 for i = 1, · · · , k,
which together with Rk = Y

⌦

� Xk�1

and Xk =Pk
j=1

✓kj (Mj)⌦ implies that hRk+1

,Mii = 0 for i =
1, · · · , k.

The following property shows that as the number of
rank-one basis matrices Mi increases during our learn-
ing process, the residual kRkk does not increase.

This is significantly different from the standard MP/OMP algorithm with a finite dictionary,  
which are known to have a sub-linear convergence speed at the worst case.	�

At each iteration, we guarantee a significant reduction of the residual, which depends  
on the top singular vector pair pursuit step. 	�

¨  Linear upper bound for the algorithm to converge 

31 
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Efficiency and Scalability	�

¨  An efficient and scalable algorithm for matrix 
completion: Rank-One Matrix Pursuit  

¤ Scalability: top-SVD 

¤ Convergence: linear convergence  

Z. Wang et al. ICML’14; SIAM J. Scientific Computing 2015 
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Related Work 

It can be solved by matching pursuit type algorithms.	�

X = θiMi
i∈I
∑

Similarity: linear convergence	�

Difference: 1. top-SVD Vs. truncated SVD 
                  2. no extra condition for linear convergence 
	�

Similarity: top-SVD 	�

Difference: linear convergence Vs. sub-linear convergence 	�

Ref: Lee, K. and Bresler, Y. Admira: atomic decomposition for minimum rank approximation. IEEE Trans. on Information Theory, 56(9):4402–4416, 2010.	�

¨  Atomic decomposition	�

¨  Vs. Frank-Wolfe algorithm (FW)	�

¨  Vs. existing greedy approach (ADMiRA)	�

33 



Time and Storage Complexity 

¨  Time complexity 

R1MP	� ADMiRA & AltMin	� JS(FW)	� Proximal	� SVT	�
Each Iter.	� O(|Ω|)	� O(r|Ω|)	� O(|Ω|)	� O(r|Ω|)	� O(r|Ω|)	�
Iterations	� O(log(1/ε))	� O(log(1/ε))	� O(1/ε)	� O(1/√ε)	� O(1/ε)	�
Total	� O(|Ω|log(1/ε))	� O(r|Ω|log(1/ε))	� O(|Ω|/ε)	� O(r|Ω|/√ε)	� O(r|Ω|/ε)	�

O(k |Ω |) It is large when k keeps increasing.	�

O(|Ω |) is more suitable for large-scale problems.	�

minimum iteration cost 
+ linear convergence	�

¨  Storage complexity 

34 



Economic Rank-One Matrix Pursuit 

¨  Step 1: find the optimal rank-one matrix basis 

Mk+1 = u*v*
T

θi
k−1 =θi

k−1α1 θi
k =α2

[u*,v*] = argmax
u,v

(Y−Xk )Ω,uv
T

Rank-One Matrix Pursuit for Matrix Completion

In view of this relation and the fact that kR
1

k =
kYk2⌦, we easily conclude that

||Rk||  kYk⌦
k�1Y

i=1

s

1� �2

⇤(Ri)

kRik2
.

As for each step we have 0 < 1

rank(Ri)
 �⇤(Ri)

kRik  1,

there must exist 0  � < 1 that satisfies ||Rk|| 
�k�1kY k

⌦

. This completes the proof.

Remark In practice, the value of kRik2

�2
⇤(Ri)

that controls

the convergence speed is much less than min(m,n).
We will emprically verify this in the experiments.

Remark If ⌦ is the entire set of all indices of
{(i, j), i = 1, · · · ,m, j = 1, · · · , n}, our rank-one ma-
trix pursuit algorithm equals to standard SVD using
the power method.

Remark This convergence is obtained for the opti-
mization residual in the low rank matrix completion
problem. We further extend our algorithm to solve the
more general matrix sensing problem and analyze the
corresponding statistical convergence behavior under
mild conditions, such as the rank-restricted isometry
property (Lee & Bresler, 2010; Jain et al., 2013). De-
tails are provided in the longer version of this paper
(Wang et al., 2014).

4. Economic Rank-One Matrix Pursuit

The proposed R1MP algorithm has to track all pur-
sued bases and save them in the memory. It demands
O(r|⌦|) storage complexity to obtain a rank-r esti-
mated matrix. For large-scale problems, such storage
requirement is not negligible and restricts the rank
of the matrix to be estimated. To adapt our algo-
rithm to large-scale problems with a large approxima-
tion rank, we simplify the orthogonal projection step
by only tracking the estimated matrix Xk�1

and the
rank-one update matrix Mk. In this case, we only
need to estimate the weights for these two matrices in
Step 2 of our algorithm by solving the following least
squares problem:

↵k = arg min
↵={↵1,↵2}

||↵
1

Xk�1

+ ↵
2

Mk �Y||2
⌦

. (12)

This still corrects all weights of the existed bases,
though the correction is sub-optimal. If we write
the estimated matrix as a linear combination of the
bases, we have Xk =

Pk
i=1

✓ki (Mi)⌦ with ✓kk = ↵k
2

and
✓ki = ✓k�1

i ↵k
1

, for i < k. The detailed procedure of this
simplified method is given in Algorithm 2.

Algorithm 2 Economic Rank-One Matrix Pursuit
(ER1MP)

Input: Y
⌦

and stopping criterion.
Initialize: Set X

0

= 0 and k = 1.
repeat

Step 1: Find a pair of top left and right singular
vectors (uk,vk) of the observed residual matrix
Rk = Y

⌦

�Xk�1

and set Mk = uk(vk)T .
Step 2: Compute the optimal weights ↵k for
Xk�1

and Mk by solving: argmin
↵

||↵
1

Xk�1

+

↵
2

(Mk)⌦ �Y
⌦

||2.
Step 3: Set Xk = ↵k

1

Xk�1

+ ↵k
2

(Mk)⌦; ✓kk = ↵k
2

and ✓ki = ✓k�1

i ↵k
1

for i < k; k  k + 1.
until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

Pk
i=1

✓ki Mi.

The proposed economic rank-one matrix pursuit algo-
rithm (ER1MP) uses the same amount of storage as
the greedy algorithms (Jaggi & Sulovský, 2010; Tewari
et al., 2011), which is significantly smaller than that
required by R1MP algorithm. Interestingly, we can
show that the ER1MP algorithm still retains the lin-
ear convergence rate. The main result is given in the
following theorem, and the proof is provided in the
long version of this paper (Wang et al., 2014).

Theorem 4.1. The economic rank-one matrix pursuit

algorithm satisfies

||Rk||  �̃k�1kYk
⌦

, 8k � 1.

�̃ is a constant in [0, 1).

5. Experiments

In this section, we compare our rank-one matrix
pursuit algorithms R1MP and ER1MP with state-
of-the-art matrix completion algorithms. The com-
peting algorithms include: singular value projection
(SVP) (Jain et al., 2010), singular value threshold-
ing (SVT) (Candès & Recht, 2009), Jaggi’s fast al-
gorithm for trace norm constraint (JS) (Jaggi &
Sulovský, 2010), spectral regularization algorithm
(SoftImpute) (Mazumder et al., 2010), low rank ma-
trix fitting (LMaFit) (Wen et al., 2010), alternat-
ing minimization (AltMin) (Jain et al., 2013), boost-
ing type accelerated matrix-norm penalized solver
(Boost) (Zhang et al., 2012) and greedy e�cient com-
ponent optimization (GECO) (Shalev-Shwartz et al.,
2011). The general greedy method (Tewari et al.,
2011) is not included in our comparison, as it includes
JS and GECO (included in our comparison) as special
cases for matrix completion. The lifted coordinate de-
scent method (Lifted) (Dud́ık et al., 2012) is not in-

α = argmin
α∈ℜ2

α1 Xk+α2 Mk+1−Y Ω

2

¨  Step 2: calculate the weights for two matrices 

¨  It retains the linear convergence 
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Experiments 

¨  Experiments 
¤  Collaborative filtering 
¤  Image recovery 
¤  Convergence property 

¨  Competing algorithms 
¤  singular value projection (SVP) 
¤  spectral regularization algorithm (SoftImpute) 
¤  low rank matrix fitting (LMaFit) 
¤  alternating minimization (AltMin) 
¤  boosting type accelerated matrix-norm penalized solver (Boost) 
¤  Jaggi's fast algorithm for trace norm constraint (JS) 
¤  greedy efficient component optimization (GECO) 
¤  Rank-one matrix pursuit (R1MP) 
¤  Economic rank-one matrix pursuit (ER1MP) 

trace norm minimization	�

alternating optimization	�

atomic decomposition	�

36 



Convergence 

Residual curves of the Lena image for R1MP and ER1MP in log-scale	�

Rank-One Matrix Pursuit for Matrix Completion

Table 3. Recommendation results measured in terms of the RMSE. Boost fails on the MovieLens10M.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 4.7311 5.1113 4.7623 4.8572 5.1746 4.4713 4.3680 4.3418 4.3384
Jester2 4.7608 5.1646 4.7500 4.8616 5.2319 4.5102 4.3967 4.3649 4.3546
Jester3 8.6958 5.4348 9.4275 9.7482 5.3982 4.6866 5.1790 4.9783 5.0145
MovieLens100K 0.9683 1.0354 1.2308 1.0042 1.1244 1.0146 1.0243 1.0168 1.0261
MovieLens1M 0.9085 0.8989 0.9232 0.9382 1.0850 1.0439 0.9290 0.9595 0.9462
MovieLens10M 0.8611 0.8534 0.8625 0.9007 – 0.8728 0.8668 0.8621 0.8692

Table 4. The running time (measured in seconds) of all methods on all recommendation datasets.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 18.35 161.49 3.68 11.14 93.91 29.68 > 104 1.83 0.99
Jester2 16.85 152.96 2.42 10.47 261.70 28.52 > 104 1.68 0.91
Jester3 16.58 10.55 8.45 12.23 245.79 12.94 > 103 0.93 0.34
MovieLens100K 1.32 128.07 2.76 3.23 2.87 2.86 10.83 0.04 0.04
MovieLens1M 18.90 59.56 30.55 68.77 93.91 13.10 > 104 0.87 0.54
MovieLens10M > 103 > 103 154.38 310.82 – 130.13 > 105 23.05 13.79
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Figure 1. Illustration of the linear convergence of the proposed
rank-one matrix pursuit algorithms on the Lenna image: the x-
axis is the iteration, and the y-axis is the RMSE in logarithmic
scale. The curves are the results for R1MP and ER1MP respec-
tively.

rule under this framework to reduce the storage complexity
and make it independent of the approximation rank. Our al-
gorithms are computationally inexpensive for each matrix
pursuit iteration, and find satisfactory results in a few iter-
ations. Another advantage of our proposed algorithms is
they have only one tunable parameter, which is the rank. It
is easy to understand and to use by the user. This becomes
especially important in large-scale learning problems. In
addition, we rigorously show that both algorithms achieve
a linear convergence rate, which is significantly better than
the previous known results (a sub-linear convergence rate).
We also empirically compare the proposed algorithms with
state-of-the-art matrix completion algorithms, and our re-
sults show that the proposed algorithms are more efficient
than competing algorithms while achieving similar or bet-
ter prediction performance. We plan to generalize our the-
oretical and empirical analysis to other loss functions in the
future.
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Table 3. Recommendation results measured in terms of the RMSE. Boost fails on the MovieLens10M.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 4.7311 5.1113 4.7623 4.8572 5.1746 4.4713 4.3680 4.3418 4.3384
Jester2 4.7608 5.1646 4.7500 4.8616 5.2319 4.5102 4.3967 4.3649 4.3546
Jester3 8.6958 5.4348 9.4275 9.7482 5.3982 4.6866 5.1790 4.9783 5.0145
MovieLens100K 0.9683 1.0354 1.2308 1.0042 1.1244 1.0146 1.0243 1.0168 1.0261
MovieLens1M 0.9085 0.8989 0.9232 0.9382 1.0850 1.0439 0.9290 0.9595 0.9462
MovieLens10M 0.8611 0.8534 0.8625 0.9007 – 0.8728 0.8668 0.8621 0.8692

Table 4. The running time (measured in seconds) of all methods on all recommendation datasets.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 18.35 161.49 3.68 11.14 93.91 29.68 > 104 1.83 0.99
Jester2 16.85 152.96 2.42 10.47 261.70 28.52 > 104 1.68 0.91
Jester3 16.58 10.55 8.45 12.23 245.79 12.94 > 103 0.93 0.34
MovieLens100K 1.32 128.07 2.76 3.23 2.87 2.86 10.83 0.04 0.04
MovieLens1M 18.90 59.56 30.55 68.77 93.91 13.10 > 104 0.87 0.54
MovieLens10M > 103 > 103 154.38 310.82 – 130.13 > 105 23.05 13.79
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Figure 1. Illustration of the linear convergence of the proposed
rank-one matrix pursuit algorithms on the Lenna image: the x-
axis is the iteration, and the y-axis is the RMSE in logarithmic
scale. The curves are the results for R1MP and ER1MP respec-
tively.
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axis is the iteration, and the y-axis is the RMSE in logarithmic
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Summary 

¨  Matrix completion background 
¨  Trace norm convex formulation 
¨  Matrix factorization: non-convex formulation 
¨  Orthogonal rank-one matrix pursuit 

¤ Efficient update: top SVD 
¤ Fact convergence: linear rate 

¨  Extensions 
¤ Tensor completion 
¤ Screening for matrices 
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