LOW RANK MATRIX COMPLETION: CONVEX, NON-CONVEX AND GREEDY APPROACHES

Jieping Ye
University of Michigan

Joint work with Zheng Wang, Ming-Jun Lai, Zhaosong Lu, Wei Fan, and Hasan Davulcu

Outline

Background

Trace Norm Formulation
Matrix factorization
Orthogonal Rank-One Matrix Pursuit

Evaluation

Summary

Matrix Completion

Microarray data
imputation

Matrix Completion

Collaborative Filtering

Items

Customers

	$?$	$?$	$?$	$?$	$?$		$?$	$?$	$?$
$?$	$?$		$?$		$?$	$?$	$?$	$?$	$?$
$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$		$?$
$?$	$?$	$?$		$?$	$?$	$?$	$?$	$?$	$?$
	$?$	$?$	$?$	$?$		$?$	$?$	$?$	
$?$		$?$	$?$	$?$	$?$	$?$	$?$		$?$
$?$	$?$	$?$	$?$	$?$		$?$	$?$	$?$	$?$
$?$	$?$	$?$		$?$	$?$	$?$	$?$		$?$

\square Customers are asked to rank items
\square Not all customers ranked all items
\square Predict the missing rankings (98.9% is missing)

The Netflix Problem

Movies

Users		?	?	?	?	?		?	?	?
	?	?		?		?	?	?	?	?
	?	?	?	?	?	?	?	?		?
	?	?	?		?	?	?	?	?	?
		?	?	?	?		?	?	?	
	?		?	?	?	?	?	?		?
	?	?	?	?	?		?	?	?	?
	?	?	?		?	?	?	?		?

\square About a million users and 25,000 movies
\square Known ratings are sparsely distributed

Matrix Rank

\square The number of independent rows or columns
\square The singular value decomposition (SVD):

Low Rank Matrix Completion

\square Low rank matrix completion with incomplete observations can be formulated as:

$$
\begin{array}{cc}
\min _{\mathrm{X}} & \operatorname{rank}(\mathrm{X}) \\
\text { s.t. } & P_{\Omega}(\mathrm{X})=P_{\Omega}(\mathrm{Y})
\end{array}
$$

with the projection operator defined as: $\quad P_{\Omega}(\mathrm{X})=\left\{\begin{array}{cc}x_{i j} & (i, j) \in \Omega \\ 0 & (i, j) \notin \Omega\end{array}\right.$

Other Low-Rank Problems

\square Multi-Task/Class Learning
\square Image compression
\square System identification in control theory
\square Structure-from-motion problem in computer vision
\square Low rank metric learning in machine learning
\square Other settings:
\square low-degree statistical model for a random process
\square a low-order realization of a linear system
\square a low-order controller for a plant
\square a low-dimensional embedding of data in Euclidean space

Two Formulations for Rank Minimization

$\min \operatorname{loss}(X)+\lambda * \operatorname{rank}(X)$

Rank minimization is NP-hard

$$
\operatorname{loss}(X)=\frac{1}{2}\left\|P_{\Omega}(\mathrm{X})-P_{\Omega}(\mathrm{Y})\right\|_{F}^{2}
$$

Trace Norm (Nuclear Norm)

Trace norm of a matrix is the sum of its singular values:

$$
\begin{aligned}
X & =U\left(\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma_{k}
\end{array}\right) V^{T} \\
\|X\|_{*} & =\sum_{i=1}^{k} \sigma_{i}
\end{aligned}
$$

\square trace norm \Leftrightarrow 1-norm of the vector of singular values
\square trace norm is the convex envelope of the rank function over the unit ball of spectral norm \Rightarrow a convex relaxation

Two Convex Formulations

$\min \operatorname{loss}(X)+\lambda \times\|X\|_{*}$

$$
\begin{array}{ll}
\min & \|X\|_{*} \\
\text { subject to } & \operatorname{loss}(X) \leq \varepsilon
\end{array}
$$

Trace norm minimization is convex

- Can be solved by semi-definite programming
- Computationally expensive
- Recent more efficient solvers:
- Singular value thresholding (Cai et al, 2008)
- Fixed point method (Ma et al, 2009)
- Accelerated gradient descent (Toh \& Yun, 2009, Ji \& Ye, 2009)

Trace Norm Minimization

\square Trace norm convex relaxation

It can be solved by the sub-gradient method, the proximal gradient method or the conditional gradient method.

Convergence speed: sub-linear
Iteration: truncated SVD or top-SVD (Frank-Wolfe)
2. Jaggi, M. and Sulovsky, M. A simple algorithm for nuclear norm regularized problems. In ICML, 2010.

Gradient Descent for the Composite Model

(Nesterov, 2007; Beck and Teboulle, 2009)

```
min}f(x)=\operatorname{loss}(x)+\lambda\times\mathrm{ penalty (x)
```


Model

$$
\mathcal{M}\left(x_{i}, \gamma_{i}\right)=\xlongequal{\left[\operatorname{loss}\left(x_{i}\right)+\left\langle\operatorname{loss}^{\prime}\left(x_{i}\right), x-x_{i}\right\rangle\right]}+\frac{1}{2 \gamma_{i}}\left\|x-x_{i}\right\|_{2}^{2}+\lambda \times \underbrace{\lambda \times \operatorname{penalty}(x)}_{\text {Regularization }}
$$

Can the proximal operator be computed efficiently?

Proximal Operator Associated with Trace Norm

> Optimization problem $\min _{X} f(X)=\operatorname{loss}(X)+\lambda\|X\|_{*}$

$$
\begin{aligned}
& \text { Associated proximal operator } \\
& X^{*}=\pi_{t r}(V)=\arg \min _{X} \frac{1}{2}\|X-V\|_{2}^{2}+\lambda \times\|X\|_{*}
\end{aligned}
$$

Closed form solution: $X^{*}=P \operatorname{diag}(\tilde{\sigma}) Q^{\mathrm{T}}$,
where $V=P \operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right) Q^{\mathrm{T}}$ is the SVD of $V \in \mathbb{R}^{m \times n}$, $k=\min (m, n), P \in \mathbb{R}^{m \times k}, Q \in \mathbb{R}^{n \times k}$, and

$$
\tilde{\sigma}_{i}=\left\{\begin{aligned}
v_{i}-\lambda & \sigma_{i}>\lambda \\
0 & \sigma_{i} \leq \lambda
\end{aligned}\right.
$$

A Non-convex Formulation via Matrix Factorization

- Rank- r matrix X can be written as a product of two smaller matrices U and V

$$
\mathrm{X}=\mathrm{UV}^{T}
$$

$$
\|\mathrm{X}\|_{*}=\min _{\mathrm{X}=\mathrm{UV}^{T}} \frac{1}{2}\left(\|\mathrm{U}\|_{F}^{2}+\|\mathrm{V}\|_{F}^{2}\right)
$$

Alternating Optimization

$$
\min _{\mathrm{U}, \mathrm{~V}}\left\|P_{\Omega}\left(\mathrm{UV}^{T}\right)-P_{\Omega}(\mathrm{Y})\right\|_{F}^{2}+\frac{1}{2}\left(\|\mathrm{U}\|_{F}^{2}+\|\mathrm{V}\|_{F}^{2}\right)
$$

Non-convex

- Can be solved via
- Alternating minimization (Jain et al, 2012)
- Augmented Lagrangian (Wen et al, 2007)

Summary of Two Approaches

\square Trace norm convex relaxation
$\min _{x}$
s.t. $\quad P_{\Omega}(\mathrm{X})=P_{\Omega}(\mathrm{Y})$

$$
\begin{aligned}
& \text { noisy case } \min _{\mathrm{X}}\left\|P_{\Omega}(\mathrm{X})-P_{\Omega}(\mathrm{Y})\right\|_{F}^{2}+\lambda\|\mathrm{X}\|_{*} \\
& \text { Projection operator: } \quad P_{\Omega}(\mathrm{X})=\left\{\begin{array}{cc}
x_{i j} & (i, j) \in \Omega \\
0 & (i, j) \notin \Omega
\end{array}\right.
\end{aligned}
$$

- Bilinear non-convex relaxation

$$
\mathrm{X}=\mathrm{UV}^{T}
$$

$$
\min _{\mathrm{U}, \mathrm{~V}}\left\|P_{\Omega}\left(\mathrm{U} \mathrm{~V}^{T}\right)-P_{\Omega}(\mathrm{Y})\right\|_{F}^{2}
$$

Rank-One Matrix Space

Rank-one matrices with unit norm as Atoms

$$
\mathrm{M} \in \mathfrak{R}^{n \times m} \quad \text { for } \quad \mathrm{M}=u v^{T} \quad u \in \mathfrak{R}^{n} \quad v \in \mathfrak{R}^{m}
$$

Matrix Completion in Rank-One Matrix Space

\square Matrix completion in rank-one matrix space

$$
\begin{array}{cc}
\min _{\theta \in \mathfrak{R}^{l},\left\{M_{i}\right\}} & \|\boldsymbol{\theta}\|_{0} \\
\text { s.t. } & P_{\Omega}(\mathrm{X}(\theta))=P_{\Omega}(\mathrm{Y})
\end{array}
$$

with the estimated matrix in the rank-one matrix space as
$\mathrm{X}(\boldsymbol{\theta})=\sum_{i \in I} \theta_{i} \mathrm{M}_{i}$

- Reformulation in the noisy case

$$
\begin{array}{cc}
\min _{\mathrm{X}(\boldsymbol{\theta})} & \left\|P_{\Omega}(\mathrm{X}(\theta))-P_{\Omega}(\mathrm{Y})\right\|_{F}^{2} \\
\text { s.t. } & \|\boldsymbol{\theta}\|_{0} \leq r
\end{array}
$$

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The candidate set is an infinite set composed by all rank-one matrices

$$
\mathbf{M} \in \mathfrak{R}^{n \times m}
$$

Orthogonal Matching Pursuit

\square Greedy algorithm to iteratively solve an optimization problem with a solution spanned by the bases in a given (over-complete) dictionary

$$
D=\left\{d^{(1)}, d^{(2)}, \ldots, d^{(T)}\right\}
$$

$$
\begin{array}{cc}
\min _{\hat{x}} & \|x-\hat{x}\|^{2} \\
\text { s.t. } & \hat{x}=\sum_{i=1}^{r} \theta_{i} d_{i}
\end{array}
$$

Iteration k:
Step 1: basis selection

$$
d_{i}=\underset{d \in D}{\operatorname{argmax}}|\langle r, d\rangle| \quad r=x-\sum_{i=1}^{k-1} \theta_{i} d_{i}
$$

Step 2: orthogonal projection

$$
\theta=\underset{\theta}{\operatorname{argmax}}\left\|x-\sum_{i=1}^{k} \theta_{i} d_{i}\right\|
$$

Compressive Sensing

\square When data is sparse/compressible, can directly acquire a condensed representation $\quad y=\Phi x$

Convex Formulation

\square Signal recovery via ℓ_{1} optimization [Candes, Romberg, Tao; Donoho]

$$
\widehat{x}=\arg \min _{y=\phi x}\|x\|_{1}
$$

Greedy Algorithms

\square Signal recovery via iterative greedy algorithms

- (orthogonal) matching pursuit [Gilbert, Tropp]
- iterated thresholding [Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, Defrise, De Mol; Blumensath, Davies; ...]
- CoSaMP [Needell and Tropp]

Greedy Recovery Algorithm (1)

\square Consider the following problem

\square Can we recover the support?

Greedy Recovery Algorithm (2)

■ If $\Phi=\left[\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right]$
then arg max $\left|\left\langle\phi_{i}, y\right\rangle\right|$ gives the support of x
\square How to extend to K-sparse signals?

Greedy Recovery Algorithm (3)

residue:
find atom:
Add atom to support:
Signal estimate

$$
\begin{aligned}
& r=y-\Phi \widehat{x}_{k-1} \\
& k=\arg \max \left|\left\langle\phi_{i}, r\right\rangle\right|
\end{aligned}
$$

$$
S=S \bigcup\{k\}
$$

$$
x_{k}=\left(\Phi_{S}\right)^{\dagger} y
$$

Orthogonal Matching Pursuit

goal:
given $y=\Phi x$, recover a sparse x
columns of Φ are unit-norm
initialize: $\widehat{x}_{0}=0, r=y, \Lambda=\{ \}, i=0$
iteration:
○ $i=i+1$
$\circ b=\Phi^{T} r$
$\circ k=\arg \max \{|b(1)|,|b(2)|, \ldots,|b(N)|\}$
$\circ \Lambda=\Lambda \bigcup k$
$\circ\left(\widehat{x}_{i}\right)_{\mid \Lambda}=\left(\Phi_{\mid \Lambda}\right)^{\dagger} y,\left(\widehat{x}_{i}\right)_{\mid \Lambda^{c}}=0$
$\circ r=y-\Phi \widehat{x}_{i}$

Update signal estimate

Update residual

Orthogonal Rank-One Matrix Pursuit for Matrix Completion

\square Matrix completion in rank-one matrix space

$$
\begin{array}{lc}
\min _{\mathrm{X}(\boldsymbol{\theta})} & \left\|P_{\Omega}(\mathrm{X}(\boldsymbol{\theta}))-P_{\Omega}(\mathrm{Y})\right\|_{F}^{2} \\
\text { s.t. } & \|\boldsymbol{\theta}\|_{0} \leq r
\end{array}
$$

s.t.

$$
\mathrm{X}(\boldsymbol{\theta})=\sum_{i \in I} \theta_{i} \mathrm{M}_{i}
$$

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The candidate set is an infinite set composed by all rank-one matrices.

Top-SVD: Rank-One Matrix Basis

Step 1: basis construction
with residual matrix

$$
\left[u_{*}, v_{*}\right]=\underset{|u||=1,|v|=1}{\operatorname{argmax}}\left\langle\mathrm{R}, u v^{T}\right\rangle=u^{T} \mathrm{R} v
$$

$\mathrm{M}=u_{*} v_{*}^{T}$ is selected from all rank-one matrices with unit norm.

All rank-one matrices

Infinite size

Rank-One Matrix Pursuit Algorithm

Step 1: construct the optimal rank-one matrix basis

$$
\left[u_{*}, v_{*}\right]=\underset{u, v}{\operatorname{argmax}}\left\langle\left(\mathrm{Y}-\mathrm{X}_{k}\right)_{\Omega}, u v^{T}\right\rangle \quad \mathbf{M}_{k+1}=u_{*} v_{*}^{T}
$$

This is the top singular vector pair, which can be solved efficiently by power method.

This generalizes OMP with infinite dictionary set of all rank-one matrices $M \in \mathfrak{R}^{n \times m}$
\square Step 2: calculate the optimal weights for current bases

$$
\theta^{k}=\underset{\theta \in \Re^{k}}{\arg \min }\left\|\sum_{i} \theta_{i} \mathrm{M}_{i}-\mathrm{Y}\right\|_{\Omega}^{2}
$$

This is a least squares problem, which can be solved incrementally.

Linear Convergence

\square Linear upper bound for the algorithm to converge

Theorem 3.1. The rank-one matrix pursuit algorithm satisfies

$$
\left\|\mathbf{R}_{k}\right\| \leq \gamma^{k-1}\|\mathbf{Y}\|_{\Omega}, \quad \forall k \geq 1
$$

γ is a constant in $[0,1)$.

This is significantly different from the standard MP/OMP algorithm with a finite dictionary, which are known to have a sub-linear convergence speed at the worst case.

At each iteration, we guarantee a significant reduction of the residual, which depends on the top singular vector pair pursuit step.
Z. Wang et al. ICML'14; SIAM J. Scientific Computing 2015

Efficiency and Scalability

\square An efficient and scalable algorithm for matrix completion: Rank-One Matrix Pursuit
\square Scalability: top-SVD
\square Convergence: linear convergence

Related Work

\square Atomic decomposition $\quad \mathrm{X}=\sum_{i \in I} \theta_{i} \mathrm{M}_{i}$
It can be solved by matching pursuit type algorithms.
\square Vs. Frank-Wolfe algorithm (FW)
Similarity: top-SVD
Difference: linear convergence V s. sub-linear convergence
\square Vs. existing greedy approach (ADMiRA)
Similarity: linear convergence
Difference: 1. top-SVD Vs. truncated SVD
2. no extra condition for linear convergence

Time and Storage Complexity

\square Time complexity

	R1MP	ADMiRA \& AItMin	JS(FW)	Proximal	SVT
Each Iter.	$O(\|\Omega\|)$	$O(\mathrm{r}\|\Omega\|)$	$O(\|\Omega\|)$	$O(\mathrm{r}\|\Omega\|)$	$O(\mathrm{r}\|\Omega\|)$
Iterations	$O(\log (1 / \varepsilon))$	$O(\log (1 / \varepsilon))$	$O(1 / \varepsilon)$	$O(1 / \sqrt{\varepsilon})$	$O(1 / \varepsilon)$
Total	$O(\|\Omega\| \log (1 / \varepsilon))$	$O(\mathrm{r}\|\Omega\| \log (1 / \varepsilon))$	$O(\|\Omega\| / \varepsilon)$	$O(\mathrm{r}\|\Omega\| / \sqrt{ } \varepsilon)$	$O(\mathrm{r}\|\Omega\| / \varepsilon)$

minimum iteration cost

+ linear convergence
\square Storage complexity
$O(k|\Omega|)$ It is large when k keeps increasing.
$O(|\Omega|)$ is more suitable for large-scale problems.

Economic Rank-One Matrix Pursuit

\square Step 1: find the optimal rank-one matrix basis

$$
\left[u_{*}, v_{*}\right]=\underset{u, v}{\operatorname{argmax}}\left\langle\left(\mathrm{Y}-\mathrm{X}_{k}\right)_{\Omega}, u v^{T}\right\rangle \quad \mathrm{M}_{k+1}=u_{*} v_{*}^{T}
$$

- Step 2: calculate the weights for two matrices

$$
\begin{aligned}
& \boldsymbol{\alpha}=\underset{\alpha \in \Re^{2}}{\arg \min }\left\|\alpha_{1} \mathrm{X}_{k}+\alpha_{2} \mathrm{M}_{k+1}-\mathrm{Y}\right\|_{\Omega}^{2} \\
& \theta_{i}^{k-1}=\theta_{i}^{k-1} \alpha_{1} \quad \theta_{i}^{k}=\alpha_{2}
\end{aligned}
$$

\square It retains the linear convergence

$$
\begin{aligned}
& \text { Theorem 4.1. The economic rank-one matrix pursuit } \\
& \text { algorithm satisfies } \\
& \qquad\left\|\mathbf{R}_{k}\right\| \leq \tilde{\gamma}^{k-1}\|\mathbf{Y}\|_{\Omega}, \quad \forall k \geq 1 \\
& \tilde{\gamma} \text { is a constant in }[0,1)
\end{aligned}
$$

Experiments

\square Experiments

- Collaborative filtering
- Image recovery
- Convergence property
\square Competing algorithms
- singular value projection (SVP)
- spectral regularization algorithm (Softlmpute)
trace norm minimization
- low rank matrix fitting (LMaFit)
- alternating minimization (AltMin)
alternating optimization
- boosting type accelerated matrix-norm penalized solver (Boost)
\square Jaggi's fast algorithm for trace norm constraint (JS)
- greedy efficient component optimization (GECO)
- Rank-one matrix pursuit (R1MP)
- Economic rank-one matrix pursuit (ER1MP)

Convergence

Residual curves of the Lena image for R1MP and ER1MP in log-scale

Collaborative Filtering

Running time for different algorithms

Dataset	SVP	SoftImpute	LMaFit	AltMin	Boost	JS	GECO	R1MP	ER1MP
Jester1	18.35	161.49	3.68	11.14	93.91	29.68	$>10^{4}$	1.83	0.99
Jester2	16.85	152.96	2.42	10.47	261.70	28.52	$>10^{4}$	1.68	0.91
Jester3	16.58	10.55	8.45	12.23	245.79	12.94	$>10^{3}$	0.93	0.34
MovieLens100K	1.32	128.07	2.76	3.23	2.87	2.86	10.83	0.04	0.04
MovieLens1M	18.90	59.56	30.55	68.77	93.91	13.10	$>10^{4}$	0.87	0.54
MovieLens10M	$>10^{3}$	$>10^{3}$	154.38	310.82	-	130.13	$>10^{5}$	23.05	13.79

Prediction accuracy in terms of RMSE

Dataset	SVP	SoftImpute	LMaFit	AltMin	Boost	JS	GECO	R1MP	ER1MP
Jester1	4.7311	5.1113	4.7623	4.8572	5.1746	4.4713	4.3680	4.3418	4.3384
Jester2	4.7608	5.1646	4.7500	4.8616	5.2319	4.5102	4.3967	4.3649	4.3546
Jester3	8.6958	5.4348	9.4275	9.7482	5.3982	4.6866	5.1790	4.9783	5.0145
MovieLens100K	0.9683	1.0354	1.2308	1.0042	1.1244	1.0146	1.0243	1.0168	1.0261
MovieLens1M	0.9085	0.8989	0.9232	0.9382	1.0850	1.0439	0.9290	0.9595	0.9462
MovieLens10M	0.8611	0.8534	0.8625	0.9007	-	0.8728	0.8668	0.8621	0.8692

Summary

\square Matrix completion background
\square Trace norm convex formulation
\square Matrix factorization: non-convex formulation
\square Orthogonal rank-one matrix pursuit

- Efficient update: top SVD
\square Fact convergence: linear rate
\square Extensions
\square Tensor completion
\square Screening for matrices

