Matrix Factorization and Factorization Machines for Recommender Systems

Chih-Jen Lin

Department of Computer Science
National Taiwan University

Talk at SDM workshop on Machine Learning Methods on
Recommender Systems, May 2, 2015

Outline

(1) Matrix factorization
(2) Factorization machines
(3) Conclusions

In this talk I will briefly discuss two related topics

- Fast matrix factorization (MF) in shared-memory systems
- Factorization machines (FM) for recommender systems and classification/regression
Note that MF is a special case of FM

Outline

(1) Matrix factorization

- Introduction and issues for parallelization
- Our approach in the package LIBMF

Factorization machines

Conclusions

Outline

(1) Matrix factorization

- Introduction and issues for parallelization - Our approach in the package LIBMF

2 Factorization machines
(3) Conclusions

Matrix Factorization

- Matrix Factorization is an effective method for recommender systems (e.g., Netflix Prize and KDD Cup 2011)
- But training is slow.
- We developed a parallel MF package LIBMF for shared-memory systems
http://www.csie.ntu.edu.tw/~cjlin/libmf
- Best paper award at ACM RecSys 2013

Matrix Factorization (Cont'd)

- For recommender systems: a group of users give ratings to some items

User	Item	Rating
1	5	100
1	10	80
1	13	30
\ldots	\ldots	\ldots
u	v	r
\ldots	\ldots	\ldots

- The information can be represented by a rating matrix R

Matrix Factorization (Cont'd)

- m, n : numbers of users and items
- u, v : index for $u_{t h}$ user and $v_{t h}$ item
- $r_{u, v}: u_{t h}$ user gives a rating $r_{u, v}$ to $v_{t h}$ item

Matrix Factorization (Cont'd)

- k : number of latent dimensions
- $r_{u, v}=\mathbf{p}_{u}^{T} \mathbf{q}_{v}$
- $?_{2,2}=\mathbf{p}_{2}^{T} \mathbf{q}_{2}$

Matrix Factorization (Cont'd)

- A non-convex optimization problem:
$\min _{P, Q} \sum_{(u, v) \in R}\left(\left(r_{u, v}-\mathbf{p}_{u}^{T} \mathbf{q}_{v}\right)^{2}+\lambda_{P}\left\|\mathbf{p}_{u}\right\|_{F}^{2}+\lambda_{Q}\left\|\mathbf{q}_{v}\right\|_{F}^{2}\right)$
λ_{P} and λ_{Q} are regularization parameters
- SG (Stochastic Gradient) is now a popular optimization method for MF
- It loops over ratings in the training set.

Matrix Factorization (Cont'd)

- SG update rule:

$$
\begin{aligned}
& \mathbf{p}_{u} \leftarrow \mathbf{p}_{u}+\gamma\left(e_{u, v} \mathbf{q}_{v}-\lambda_{P} \mathbf{p}_{u}\right), \\
& \mathbf{q}_{v} \leftarrow \mathbf{q}_{v}+\gamma\left(e_{u, v} \mathbf{p}_{u}-\lambda_{Q} \mathbf{q}_{v}\right)
\end{aligned}
$$

where

$$
e_{u, v} \equiv r_{u, v}-\mathbf{p}_{u}^{T} \mathbf{q}_{v}
$$

- SG is inherently sequential

SG for Parallel MF

After $r_{3,3}$ is selected, ratings in gray blocks cannot be updated

But $r_{6,6}$ can be used

$$
\begin{aligned}
& \text { - } r_{3,1}=\mathbf{p}_{3}{ }^{\top} \mathbf{q}_{1} \\
& \text { - } r_{3,2}=\mathbf{p}_{3}{ }^{\top} \mathbf{q}_{2} \\
& \text { - } r_{3,6}=\mathbf{p}_{3}{ }^{\top} \mathbf{q}_{6} \\
& \text { - } r_{3,3}=\mathbf{p}_{\mathbf{3}}{ }^{\top} \mathbf{q}_{\mathbf{3}} \\
& r_{6,6}=\mathbf{p}_{6}{ }^{\top} \mathbf{q}_{\mathbf{6}}
\end{aligned}
$$

SG for Parallel MF (Cont'd)

We can split the matrix to blocks.
Then use threads to update the blocks where ratings in different blocks don't share \mathbf{p} or \mathbf{q}

SG for Parallel MF (Cont'd)

- This concept of splitting data to independent blocks seems to work
- However, there are many issues to have a right implementation under the given architecture

Outline

(1) Matrix factorization

- Introduction and issues for parallelization
- Our approach in the package LIBMF
(2) Factorization machines
(3) Conclusions

Our approach in the package LIBMF

- Parallelization (Zhuang et al., 2013; Chin et al., 2015a)
- Effective block splitting to avoid synchronization time
- Partial random method for the order of SG updates
- Adaptive learning rate for SG updates (Chin et al., 2015b)
Details omitted due to time constraint

Block Splitting and Synchronization

- A naive way for T nodes is to split the matrix to $T \times T$ blocks

- This is used in DSGD (Gemulla et al., 2011) for distributed systems. The setting is reasonable because communication cost is the main concern
- In distributed systems, it is difficult to move data or model

Block Splitting and Synchronization (Cont'd)

- Block 1: 20s
- However, for shared memory - Block 2: 10s systems, synchronization is a \quad Block 3: 20s concern

We have 3 threads

Thread	$0 \rightarrow 10$	$10 \rightarrow 20$
1	Busy	Busy
2	Busy	Idle
3	Busy	Busy
10 s wasted!!		

Lock-Free Scheduling

We split the matrix to enough blocks. For example, with two threads, we split the matrix to 4×4 blocks

0 is the updated counter recording the number of updated times for each block

Lock-Free Scheduling (Cont'd)

Firstly, T_{1} selects a block randomly

Lock-Free Scheduling (Cont'd)

For T_{2}, it selects a block neither green nor gray randomly

Lock-Free Scheduling (Cont'd)

After T_{1} finishes, the counter for the corresponding block is added by one

Lock-Free Scheduling (Cont'd)

T_{1} can select available blocks to update Rule: select one that is least updated

Lock-Free Scheduling (Cont'd)

SG: applying Lock-Free Scheduling SG**: applying DSGD-like Scheduling

MovieLens 10M

Yahoo!Music

- MovieLens 10M: 18.71s \rightarrow 9.72s (RMSE: 0.835)
- Yahoo!Music: 728.23s $\rightarrow 462.55$ s (RMSE: 21.985)

Memory Discontinuity

Discontinuous memory access can dramatically increase the training time. For SG, two possible update orders are

Update order	Advantages	Disadvantages

Random	Faster and stable
Sequential	Memory continuity

Memory discontinuity Not stable

Sequential

Our lock-free scheduling gives randomness, but the resulting code may not be cache friendly

Partial Random Method

Our solution is that for each block, access both \hat{R} and \hat{P} continuously
$\hat{R}:$ (one block) $\quad \hat{P}^{T}$

- Partial: sequential in each block
- Random: random when selecting block

Partial Random Method (Cont'd)

- The performance of Partial Random Method is better than that of Random Method

Experiments

State-of-the-art methods compared

- LIBPMF: a parallel coordinate descent method (Yu et al., 2012)
- NOMAD: an asynchronous SG method (Yun et al., 2014)
- LIBMF: earlier version of LIBMF (Zhuang et al., 2013; Chin et al., 2015a)
- LIBMF++: with adaptive learning rates for SG (Chin et al., 2015c)

Experiments (Cont'd)

Data Set	m	n	\#ratings
Netflix	$2,649,429$	17,770	$99,072,112$
Yahoo!Music	$1,000,990$	624,961	$252,800,275$
Webscope-R1	$1,948,883$	$1,101,750$	$104,215,016$
Hugewiki	39,706	$25,000,000$	$1,703,429,136$

- Due to machine capacity, Hugewiki here is about half of the original
- $k=100$

Experiments (Cont'd)

Netflix

Webscope-R1

Yahoo!Music

Hugewiki

Non-negative Matrix Factorization (NMF)

- Our method has been extended to solve NMF

$$
\min _{P, Q} \sum_{(u, v) \in R}\left(\left(r_{u, v}-\mathbf{p}_{u}^{T} \mathbf{q}_{v}\right)^{2}+\lambda_{P}\left\|\mathbf{p}_{u}\right\|_{F}^{2}+\lambda_{Q}\left\|\mathbf{q}_{v}\right\|_{F}^{2}\right)
$$

subject to $P_{i, u} \geq 0, Q_{i, v} \geq 0, \forall i, u, v$

Outline

(1) Matrix factorization

(2) Factorization machines

Conclusions

MF and Classification/Regression

- MF solves

$$
\min _{P, Q} \sum_{(u, v) \in R}\left(r_{u, v}-\mathbf{p}_{u}^{T} \mathbf{q}_{v}\right)^{2}
$$

Note that I omit the regularization term

- Ratings are the only given information
- This doesn't sound like a classification or regression problem
- In the second part of this talk we will make a connection and introduce FM (Factorization Machines)

Handling User/Item Features

- What if instead of user/item IDs we are given user and item features?
- Assume user u and item v have feature vectors

$$
\mathbf{f}_{u} \text { and } \mathbf{g}_{v}
$$

- How to use these features to build a model?

Handling User/Item Features (Cont'd)

- We can consider a regression problem where data instances are

$$
\begin{array}{cc}
\text { value } & \text { features } \\
\vdots & \vdots \\
r_{u v} & {\left[\mathbf{f}_{u}^{T}\right.} \\
\left.\mathbf{g}_{v}^{T}\right]
\end{array}
$$

and solve

$$
\min _{\mathbf{w}} \sum_{u, v \in R}\left(R_{u, v}-\mathbf{w}^{T}\left[\begin{array}{l}
\mathbf{f}_{u} \\
\mathbf{g}_{v}
\end{array}\right]\right)^{2}
$$

Feature Combinations

- However, this does not take the interaction between users and items into account
- Note that we are approximating the rating $r_{u, v}$ of user u and item v
- Let

$$
\begin{aligned}
& U \equiv \text { number of user features } \\
& V \equiv \text { number of item features }
\end{aligned}
$$

- Then

$$
\begin{aligned}
& \mathbf{f}_{u} \in R^{U}, u=1, \ldots, m, \\
& \mathbf{g}_{v} \in R^{V}, v=1, \ldots, n
\end{aligned}
$$

Feature Combinations (Cont'd)

- Following the concept of degree-2 polynomial mappings in SVM, we can generate new features

$$
\left(f_{u}\right)_{t}\left(g_{v}\right)_{s}, t=1, \ldots, U, s=1, \ldots V
$$

and solve

$$
\min _{w_{t, s,}, \forall t, s} \sum_{u, v \in R}\left(r_{u, v}-\sum_{t^{\prime}=1}^{U} \sum_{s^{\prime}=1}^{V} w_{t^{\prime}, s^{\prime}}\left(f_{u}\right)_{t}\left(g_{v}\right)_{s}\right)^{2}
$$

Feature Combinations (Cont'd)

- This is equivalent to

$$
\min _{W} \sum_{u, v \in R}\left(r_{u, v}-\mathbf{f}_{u}^{T} W \mathbf{g}_{v}\right)^{2}
$$

where

$$
W \in R^{U \times V} \text { is a matrix }
$$

- If we have $\operatorname{vec}(W)$ by concatenating W 's columns, another form is

$$
\min _{W} \sum_{u, v \in R}\left(r_{u, v}-\operatorname{vec}(W)^{T}\left[\begin{array}{c}
\vdots \\
\left(f_{u}\right)_{t}\left(g_{v}\right)_{s} \\
\vdots
\end{array}\right]\right)^{2}
$$

Feature Combinations (Cont'd)

- However, this setting fails for extremely sparse features
- Consider the most extreme situation. Assume we have
user ID and item ID
as features
- Then

$$
\begin{aligned}
U & =m, J=n, \\
\mathbf{f}_{i} & =[\underbrace{0, \ldots, 0}_{i-1}, 1,0, \ldots, 0]^{T}
\end{aligned}
$$

Feature Combinations (Cont'd)

- The optimal solution is

$$
W_{u, v}= \begin{cases}r_{u, v}, & \text { if } u, v \in R \\ 0, & \text { if } u, v \notin R\end{cases}
$$

- We can never predict

$$
r_{u, v}, u, v \notin R
$$

Factorization Machines

- The reason why we cannot predict unseen data is because in the optimization problem

$$
\# \text { variables }=m n \gg \# \text { instances }=|R|
$$

- Overfitting occurs
- Remedy: we can let

$$
W \approx P^{T} Q
$$

where P and Q are low-rank matrices. This becomes matrix factorization

Factorization Machines (Cont'd)

- This can be generalized to sparse user and item features

$$
\min _{u, v \in R}\left(R_{u, v}-\mathbf{f}_{u}^{T} P^{T} Q \mathbf{g}_{v}\right)^{2}
$$

- That is, we think

$$
P \mathbf{f}_{u} \text { and } Q \mathbf{g}_{v}
$$

are latent representations of user u and item v, respectively

- This becomes factorization machines (Rendle, 2010)

Factorization Machines (Cont'd)

- Similar ideas have been used in other places such as Stern, Herbrich, and Graepel (2009)
- In summary, we connect MF and classification/regression by the following settings
- We need combination of different feature types (e.g., user, item, etc)
- However, overfitting occurs if features are very sparse
- We use product of low-rank matrices to avoid overfitting

Factorization Machines (Cont'd)

- We see that such ideas can be used for not only recommender systems.
- They may be useful for any classification problems with very sparse features

Field-aware Factorization Machines

- We have seen that FM is useful to handle highly sparse features such as user IDs
- What if we have more than two ID fields?
- For example, in CTR prediction for computational advertising, we may have
value

CTR user ID, Ad ID, site ID

Field-aware Factorization Machines (Cont'd)

- FM can be generalized to handle different interactions between fields

Two latent matrices for user ID and Ad ID Two latent matrices for user ID and site ID

- This becomes FFM: field-aware factorization machines (Rendle and Schmidt-Thieme, 2010)

FFM for CTR Prediction

- It's used by Jahrer et al. (2012) to win the 2nd prize of KDD Cup 2012
- Recently my students used FFM to win two Kaggle competitions
- After we used FFM to win the first, in the second competition all top teams use FFM
- Note that for CTR prediction, logistic rather than squared loss is used

Discussion

- How to decide which field interactions to use?
- If features are not extremely sparse, can the result still be better than degree-2 polynomial mappings? Note that we lose the convexity here
- We have a software LIBFFM for public use http://www.csie.ntu.edu.tw/~cjlin/libffm

Experiments

- We see that

$$
W \Rightarrow P^{T} Q
$$

reduces the number of variables

- What if we map

$$
\left[\begin{array}{c}
\vdots \\
\left(f_{u}\right)_{t}\left(g_{v}\right)_{s} \\
\vdots
\end{array}\right] \Rightarrow \text { a shorter vector }
$$

to reduce the number of features/variables

Experiments (Cont'd)

- However, we may have something like

$$
\begin{align*}
& \left(r_{1,2}-W_{1,2}\right)^{2} \Rightarrow\left(r_{1,2}-\bar{w}_{1}\right)^{2} \tag{1}\\
& \left(r_{1,4}-W_{1,4}\right)^{2} \Rightarrow\left(r_{1,4}-\bar{w}_{2}\right)^{2} \\
& \left(r_{2,1}-W_{2,1}\right)^{2} \Rightarrow\left(r_{2,1}-\bar{w}_{3}\right)^{2} \\
& \left(r_{2,3}-W_{2,3}\right)^{2} \Rightarrow\left(r_{2,3}-\bar{w}_{1}\right)^{2} \tag{2}
\end{align*}
$$

- Clearly, there is no reason why (1) and (2) should share the same variable \bar{w}_{1}
- In contrast, in MF, we connect $r_{1,2}$ and $r_{1,3}$ through \mathbf{p}_{1}

Experiments (Cont'd)

- A simple comparison on MovieLens \# training: 9,301,274, \# test: 698,780, \# users: 71,567, \# items: 65,133
- Results of MF: RMSE $=0.836$
- Results of Poly-2 + Hashing:

RMSE $=1.14568$ (10^{6} bins), 3.62299 (10^{8} bins), 3.76699 (all pairs)

- We can clearly see that MF is much better

Outline

(1) Matrix factorization

(2) Factorization machines

(3) Conclusions

Conclusions

- In this talk we have talked about MF and FFM
- MF is a mature technique, so we investigate its fast training
- FFM is relatively new. We introduce its basic concepts and practical use

Acknowledgments

The following students have contributed to works mentioned in this talk

- Wei-Sheng Chin
- Yu-Chin Juan
- Bo-Wen Yuan
- Yong Zhuang

