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WHY GRAPH BASED REPRESENTATION? 

 Pros 

• Can represent heterogeneous information sources, which 
leads to a high coverage avoiding cold start. 

• Potential to be more accurate as the knowledge base 
represents detailed information. 

• Social network integration. 

 Cons 

• Calculation methods easily run into exponential problems. 

• Does not compress the information. Storage / memory 
problems. 
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SAMPLE REPRESENTATION  
(MovieLens Dataset) 
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INFORMATION SOURCES 

 Konstas et al. – On Social Networks and Collaborative 
Recommendation (2009) 

• Information source: users, tracks and tags. 

• Representation: partitioned matrix. 

 Hidasi et al. – Fast ALS-based tensor factorization for context-
aware recommendation from implicit feedback (2012) 

 Information source: users, items and context info. 

• Representation: tensor. 

 Kazienko et al. – Multidimensional Social Network in the Social 
Recommender System (2013) 

• Information source: contact lists, tags, groups, favourites, 
opinions and social network. 

• Representation: layered graph. 
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NETWORKS 

 Guy et al. – Personalized Recommendation of Social Software 
Items Based on Social Relations (2009) 

• Method: collaborative formula with explicit weighting scheme. 

• User similarity is based on the social network (SONAR). 

 Jeong et al. – Personalized Recommendation Based on 
Collaborative Filtering with Social Network Analysis (2012) 

• Involvement of network science measures. 

 Salakhutdinov et al. - Restricted Boltzmann machines  
for collaborative filtering (2007) 

 Huang - A Graph-based Recommender System  
for Digital Library (2002) 

• Hopfield network 
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RECOMMENDATION 
SPREADING 



RECOMMENDATION SPREADING 

• Spreading activation based method. 

• The termination criteria is a step limit. 

• For each rating edge the flown through activation is accumulated. 

• The accumulated values are used as weights for user ratings  

 in the collaborative filtering formula. 

9 



A SAMPLE NETWORK 

We'd like to provide a rating 

estimation for Fred on Argo. 
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INITIAL ITERATION STEP 

• The iteration is initialized. 

• The activation of the nodes  
is initialized to 0. 

• Except to source node.  
Its activation is initialized to 1. 
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ITERATION STEP 1 

 A part of the activation is kept  
at the node 

 activation relax is 0.5. 

 A part of the activation is 
spreading to  
the neighbours distributed 
equally. 

 Spreading relax is 0.5. 

 Fred (top node) 

 0.5 = 1 x 0.5 (activations relax)  
stays at the node 

 Casino (leftmost node) 

• 0.167 = 1 x 0.5 (spreading relax)  
x 1/3 (3 neighbours) 
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ITERATION STEP 2 

• The spreading continues. 

• Martin and Eve also receive 
activation. 

• Martin (left octagon) receives 
more because there are 2 
parallel paths to the node 
representing Martin. 
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ITERATION STEP 3 

• Argo (bottom node) received 
0.024 activation. 

• The activation arrived from 
Martin and Eve via rating edge 
R1 and R2. 

• We stop the iteration with a 
step limit (in this case 3). 
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RATING WEIGHTS 

 Activation received 

 From Martin 

 0.014 = 0.083 x 0.5  
(spreading relax) x 1/3 (3 edges 
from Martin) 

 From Eve 

 0.010 = 0.042 x 0.5  
(spreading relax) x ½ (2 edges 
from Eve) 
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ESTIMATING THE RATING VALUE 

 LETS ASSUME 

 The average ratings for 

 Fred: 4 

 Martin: 3 

 Eve: 4 

 The rating values for 

 Martin: 5 (the difference 
from the mean is 2) 

 Eve: 3 (the difference 
from the mean is -1) 

 Rating value similarities 
(from previous slide) 

 Martin: 0.014 

 Eve: 0.010 

 THE FINAL RATING 
ESTIMATION IS 

 4 + 
(0.014 x (5-3) + 
0.010 x (3-4)) /  
(0.014 + 0.010) = 

 4 + 
(0.014 x 2 + 
0.010 x -1) /  
(0.024) = 

 4 + 0.75 = 

 4.75 
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MOVIELENS DATASET 

 Node types –  AgeCategory, Gender, Genre, Item (Movie),  

Occupation, Person, YearOfPublishing, ZipCode 

 Relation types – ItemGenre, ItemRating, ItemYearOfPublishing, 

PersonAgeCategory, PersonGender, PersonOccupation, 

PersonZipCodeRegion 

 Main numbers on the dataset 

 6 040 persons 

 3 883 items (movies) 

 1 000 209 ratings 

 The ratings are time-stamped 

 The rating process can be simulated. 

18 



EVALUATION 

 All rating edges are eliminated from the database 

 In each iteration step 

 The next rating record is taken (user, item, rating value) 
from the dataset in timestamp ascending order. 

 An estimation is asked from the method under evaluation. 

 Evaluation measures are recorded. 

 The rating edge is added to the knowledge base. 

 The knowledge base is filled during the evaluation process 
with rating edges. 

 MAE and coverage is recorded. 

 Coverage is the number of cases the method could provide an 
estimation. 

 MAE is the mean of the absolute error at the corresponding 
evaluation step. Absolute error is the absolute value of the 
difference between the true and estimated rating value. 
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MAE 
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COVERAGE 
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SUMMARY 

 The trend of increasing number of information sources 
and emerging graph based methods is shown. 

 Graph based representation is presented. 

 Recommendation spreading is described. 
 A spreading activation based method. 

 Distance between source nodes and rating edges. 

 Does an average weighting based on edge distance. 

 Evaluation is presented 
 Rating estimation is better in short terms than 

collaborative filtering, the same in long terms as collaborative 
filtering. 

 Coverage is definitely higher than in the case of collaborative 
filtering. 

 Heterogeneous information sources can be combined 
leading to increased recommendation quality. 
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